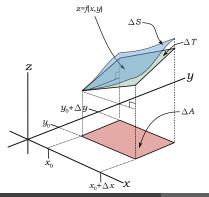
[9.13] SURFACE INTEGRALS, DERIVATION OF SURFACE ELEMENT A surface integral: $\iint_S G(x,y,z) \ dS$

We shall derive the formula for the surface element:

$$dS = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dA$$

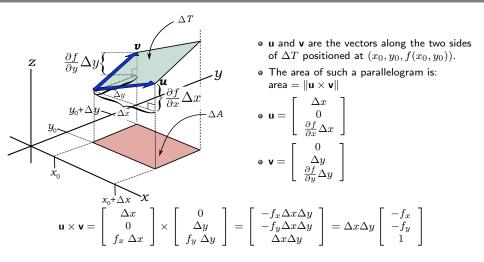


- ΔS is a surface element (part of the surface S) with one corner at (x_0, y_0) .
- ΔT is a parallelogram with one corner at (x_0, y_0) , that has the same slope as ΔS at (x_0, y_0) .
- ΔA is the projection of ΔS or ΔT on the xy-plane.

Screencast 9.13c

AM B242: Vector Analysis

The Surface Element



AM B242: Vector Analysis

$$\begin{split} \Delta T &= \|\mathbf{u} \times \mathbf{v}\| \quad = \left\| \Delta x \Delta y \begin{bmatrix} -f_x \\ -f_y \\ 1 \end{bmatrix} \right\| \\ &= \Delta x \Delta y \left\| \begin{bmatrix} -f_x \\ -f_y \\ 1 \end{bmatrix} \right\| \\ &= \Delta x \Delta y \sqrt{(-f_x)^2 + (-f_y)^2 + 1^2} \\ &= \sqrt{1 + (f_x)^2 + (f_y)^2} \ \Delta A \end{split}$$

As $\Delta x \to 0$ and $\Delta y \to 0$,

$$\Delta S \rightarrow \Delta T$$

and we can replace " Δ " with "d".

$$dS = \sqrt{1 + (f_x)^2 + (f_y)^2} \ dA$$

