Exercise 9.9

9.9 Exercises Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1-10, show that the given line integral is independent of the path. Evaluate in two ways: (a) Find a potential function ϕ and then use Theorem 9.9.1, and (b) Use any convenient path between the endpoints of the path

1. $\int_{(0,0)}^{(2,2)} x^{2} d x+y^{2} d y$
2. $\int_{(1,1)}^{(2,4)} 2 x y d x+x^{2} d y$
3. $\int_{(1,0)}^{(3,2)}(x+2 y) d x+(2 x-y) d y$
4. $\int_{(0,0)}^{(\pi / 2,0)} \cos x \cos y d x+(1-\sin x \sin y) d y$
5. $\int_{(4,1)}^{(4.4)} \frac{-y d x+x d y}{y^{2}}$ on any path not crossing the x-axis
6. $\int_{(1,0)}^{(3,4)} \frac{x d x+y d y}{\sqrt{x^{2}+y^{2}}}$ on any path not through the origin
7. $\int_{(1,2)}^{(3,6)}\left(2 y^{2} x-3\right) d x+\left(2 y x^{2}+4\right) d y$
8. $\int_{(-1,1)}^{(0.0)}(5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y$
9. $\int_{(0,0)}^{(2,8)}\left(y^{3}+3 x^{2} y\right) d x+\left(x^{3}+3 y^{2} x+1\right) d y$
10. $\int_{(-2,0)}^{(1.0)}\left(2 x-y \sin x y-5 y^{4}\right) d x-\left(20 x y^{3}+x \sin x y\right) d y$

In Problems 11-16, determine whether the given vector field is a conservative field. If so, find a potential function ϕ for \mathbf{F}.
11. $\mathbf{F}(x, y)=\left(4 x^{3} y^{3}+3\right) \mathbf{i}+\left(3 x^{4} y^{2}+1\right) \mathbf{j}$
12. $\mathbf{F}(x, y)=2 x y^{3} \mathbf{i}+3 y^{2}\left(x^{2}+1\right) \mathbf{j}$
13. $\mathbf{F}(x, y)=y^{2} \cos x y^{2} \mathbf{i}-2 x y \sin x y^{2} \mathbf{j}$
14. $\mathbf{F}(x, y)=\left(x^{2}+y^{2}+1\right)^{-2}(x \mathbf{i}+y \mathbf{j})$
15. $\mathbf{F}(x, y)=\left(x^{3}+y\right) \mathbf{i}+\left(x+y^{3}\right) \mathbf{j}$

$$
\int_{(-2,3,1)}^{(0,0,0)} 2 x z d x+2 y z d y+\left(x^{2}+y^{2}\right) d z
$$

In Problems 25 and 26, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
25. $\mathbf{F}(x, y, z)=(y-y z \sin x) \mathbf{i}+(x+z \cos x) \mathbf{j}+y \cos x \mathbf{k}$
$\mathbf{r}(t)=2 t \mathbf{i}+(1+\cos t)^{2} \mathbf{j}+4 \sin ^{3} t \mathbf{k}, 0 \leq t \leq \pi / 2$
26. $\mathbf{F}(x, y, z)=\left(2-e^{2}\right) \mathbf{i}+(2 y-1) \mathbf{j}+\left(2-x e^{z}\right) \mathbf{k}$; $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k},(-1,1,-1)$ to $(2,4,8)$
27. The inverse square law of gravitational attraction between two masses m_{1} and m_{2} is given by $\mathbf{F}=-G m_{1} m_{2} \mathbf{r} /\|\mathbf{r}\|^{3}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Show that \mathbf{F} is conservative. Find a potential function for \mathbf{F}.
28. Find the work done by the force $\mathbf{F}(x, y, z)=8 x y^{3} z \mathbf{i}+$ $12 x^{2} y^{2} z \mathbf{j}+4 x^{2} y^{3} \mathbf{k}$ acting along the helix $\mathbf{r}(t)=2 \cos t \mathbf{i}+$ $2 \sin t \mathbf{j}+t \mathbf{k}$ from $(2,0,0)$ to $(1, \sqrt{3}, \pi / 3)$. From $(2,0,0)$ to $(0,2, \pi / 2)$. [Hint: Show that \mathbf{F} is conservative.]
29. If \mathbf{F} is a conservative force field, show that the work done along any simple closed path is zero.
16. $\mathbf{F}(x, y)=2 e^{2 y} \mathbf{i}+x e^{2 y} \mathbf{j}$

In Problems 17 and 18, find the work done by the force $\mathbf{F}(x, y)=\left(2 x+e^{-y}\right) \mathbf{i}+\left(4 y-x e^{-y}\right) \mathbf{j}$ along the indicated curve. 17.

FIGURE 9.9.7 Curve for Problem 17
18.

FIGURE 9.9.8 Curve for Problem 18
In Problems 19-24, show that the given integral is independent of the path. Evaluate.
19. $\int_{(1,1,1)}^{(2,4,8)} y z d x+x z d y+x y d z$
20. $\int_{(0,0,0)}^{(1,1,1)} 2 x d x+3 y^{2} d y+4 z^{3} d z$
21. $\int_{(1,0,0)}^{(2, \pi / 2,1)}\left(2 x \sin y+e^{3 z}\right) d x+x^{2} \cos y d y+\left(3 x e^{3 z}+5\right) d z$
22. $\int_{(1,2,1)}^{(3,4,1)}(2 x+1) d x+3 y^{2} d y+\frac{1}{z} d z$
23. $\int_{(1,1, \ln 3)}^{(2,2, \ln 3)} e^{2 z} d x+3 y^{2} d y+2 x e^{2 z} d z$
30. A particle in the plane is attracted to the origin with a force $\mathbf{F}=\|\mathbf{r}\|^{n} \mathbf{r}$, where n is a positive integer and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$ is the position vector of the particle. Show that \mathbf{F} is conservative. Find the work done in moving the particle between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
31. Suppose \mathbf{F} is a conservative force field with potential function ϕ. In physics the function $p=-\phi$ is called potential energy. Since $\mathbf{F}=-\nabla p$, Newton's second law becomes

$$
m \mathbf{r}^{\prime \prime}=-\nabla p \quad \text { or } \quad m \frac{d \mathbf{v}}{d t}+\nabla p=\mathbf{0}
$$

By integrating $m \frac{d \mathbf{v}}{d t} \cdot \frac{d \mathbf{r}}{d t}+\nabla p \cdot \frac{d \mathbf{r}}{d t}=0$ with respect to t, derive the law of conservation of mechanical energy: $\frac{1}{2} m v^{2}+$ $p=$ constant. [Hint: See Problem 39 in Exercises 9.8.]
32. Suppose that C is a smooth curve between points A (at $t=a$) and B (at $t=b$) and that p is potential energy, defined in Problem 31. If \mathbf{F} is a conservative force field and $K=\frac{1}{2} m v^{2}$ is kinetic energy, show that $p(B)+K(B)=p(A)+K(A)$.

