9.8 Exercises Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–4, evaluate $\int_C G(x, y) dx$, $\int_C G(x, y) dy$, and $\int_C G(x, y) ds$ on the indicated curve C.

1. G(x, y) = 2xy; $x = 5 \cos t$, $y = 5 \sin t$, $0 \le t \le \pi/4$

2.
$$G(x, y) = x^3 + 2xy^2 + 2x$$
; $x = 2t$, $y = t^2$, $0 \le t \le 1$

3.
$$G(x, y) = 3x^2 + 6y^2$$
; $y = 2x + 1, -1 \le x \le 0$

4.
$$G(x, y) = x^2/y^3$$
; $2y = 3x^{2/3}$, $1 \le x \le 8$

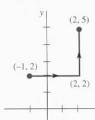
In Problems 5 and 6, evaluate $\int_C G(x, y, z) dx$, $\int_C G(x, y, z) dy$, $\int_C G(x, y, z) dz$, and $\int_C G(x, y, z) ds$ on the indicated curve C.

5.
$$G(x, y, z) = z$$
; $x = \cos t$, $y = \sin t$, $z = t$, $0 \le t \le \pi/2$

6.
$$G(x, y, z) = 4xyz$$
; $x = \frac{1}{3}t^3$, $y = t^2$, $z = 2t$, $0 \le t \le 1$

In Problems 7–10, evaluate $\int_C (2x + y) dx + xy dy$ on the given curve C between (-1, 2) and (2, 5).

7.
$$y = x + 3$$



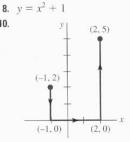


FIGURE 9.8.13 Curve C for Problem 9

FIGURE 9.8.14 Curve C for Problem 10

In Problems 11–14, evaluate $\int_C y \, dx + x \, dy$ on the given curve C between (0, 0) and (1, 1).

11.
$$y = x^2$$

12.
$$y = x$$

- 13. C consists of the line segments from (0, 0) to (0, 1) and from (0, 1) to (1, 1).
- **14.** C consists of the line segments from (0, 0) to (1, 0) and from (1,0) to (1,1).
- **15.** Evaluate $\int_C (6x^2 + 2y^2) dx + 4xy dy$, where C is given by $x = \sqrt{t}, y = t, 4 \le t \le 9.$
- **16.** Evaluate $\int_C -y^2 dx + xy dy$, where C is given by x = 2t, $y = t^3, 0 \le t \le 2.$ 17. Evaluate $\int_C 2x^3y \ dx + (3x + y) \ dy$, where C is given by
- $x = y^2$ from (1, -1) to (1, 1).
- **18.** Evaluate $\int_C 4x \, dx + 2y \, dy$, where C is given by $x = y^3 + 1$ from (0, -1) to (9, 2).

In Problems 19 and 20, evaluate $\oint_C (x^2 + y^2) dx - 2xy dy$ on the given closed curve C.

19.

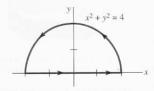


FIGURE 9.8.15 Closed curve C for Problem 19

20.

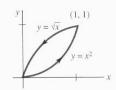
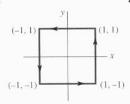


FIGURE 9.8.16 Closed curve C for Problem 20

In Problems 21 and 22, evaluate $\oint_C x^2 y^3 dx - xy^2 dy$ on the given closed curve C.

21.



22.

FIGURE 9.8.17 Closed curve C for Problem 21

FIGURE 9.8.18 Closed curve C for Problem 22

- 23. Evaluate $\oint_C (x^2 y^2) ds$, where C is given by $x = 5\cos t$, $y = 5\sin t$, $0 \le t \le 2\pi$.
- **24.** Evaluate $\int_{-C} y \, dx x \, dy$, where C is given by $x = 2\cos t$, $y = 3\sin t$, $0 \le t \le \pi$.

In Problems 25–28, evaluate $\int_C y dx + z dy + x dz$ on the given curve C between (0, 0, 0) and (6, 8, 5).

- 25. C consists of the line segments from (0, 0, 0) to (2, 3, 4) and from (2, 3, 4) to (6, 8, 5).
- **26.** $x = 3t, y = t^3, z = \frac{5}{4}t^2, 0 \le t \le 2$

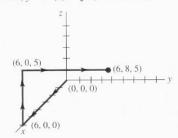


FIGURE 9.8.19 Closed curve C for Problem 27

28.

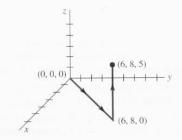


FIGURE 9.8.20 Closed curve C for Problem 28

n Problems 29 and 30, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

29.
$$\mathbf{F}(x, y) = y^3 \mathbf{i} - x^2 y \mathbf{j}; \mathbf{r}(t) = e^{-2t} \mathbf{i} + e^t \mathbf{j}, 0 \le t \le \ln 2$$

29.
$$\mathbf{F}(x, y) - y \mathbf{1} - x y \mathbf{j}, \mathbf{1}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k},$$

30. $\mathbf{F}(x, y, z) = e^x \mathbf{i} + x e^{xy} \mathbf{j} + x y e^{xyz} \mathbf{k}; \mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k},$
 $0 \le t \le 1$

31. Find the work done by the force
$$\mathbf{F}(x, y) = y\mathbf{i} + x\mathbf{j}$$
 acting along $y = \ln x$ from $(1, 0)$ to $(e, 1)$.

32. Find the work done by the force
$$\mathbf{F}(x, y) = 2xy\mathbf{i} + 4y^2\mathbf{j}$$
 acting along the piecewise-smooth curve consisting of the line segments from $(-2, 2)$ to $(0, 0)$ and from $(0, 0)$ to $(2, 3)$.

ments from
$$(-2, 2)$$
 to $(0, 0)$ and from $(0, 0)$ to $(2, 2)$ if $(0, 0)$ and from $(0, 0)$ to $(2, 2)$ if $(0, 0)$ and from $(0, 0)$ to $(0, 0)$ if $(0, 0)$ if $(0, 0)$ and from $(0, 0)$ to $(0, 0)$ if $(0, 0)$ if $(0, 0)$ in the from $(0, 0)$ is $(0, 0)$ in the from $(0, 0)$ in

34. Find the work done by the force
$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$
 acting along the curve given by $\mathbf{r}(t) = t^3\mathbf{i} + t^2\mathbf{j} + t\mathbf{k}$ from $t = 1$ to $t = 3$.

35. Find the work done by a constant force
$$\mathbf{F}(x, y) = a\mathbf{i} + b\mathbf{j}$$
 acting counterclockwise once around the circle $x^2 + y^2 = 9$.

36. In an inverse square force field
$$\mathbf{F} = c\mathbf{r}/\|\mathbf{r}\|^3$$
, where c is a constant and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$,* find the work done in moving a particle along the line from $(1, 1, 1)$ to $(3, 3, 3)$.

37. Verify that the line integral $\int_C y^2 dx + xy dy$ has the same value on *C* for each of the following parameterizations:

C:
$$x = 2t + 1$$
, $y = 4t + 2$, $0 \le t \le 1$
C: $x = t^2$, $y = 2t^2$, $1 \le t \le \sqrt{3}$
C: $x = \ln t$, $y = 2 \ln t$, $e \le t \le e^3$.

38. Consider the three curves between (0, 0) and (2, 4):

Consider the different equations
$$C_1: x = t,$$
 $y = 2t,$ $0 \le t \le 2$
 $C_2: x = t,$ $y = t^2,$ $0 \le t \le 2$
 $C_3: x = 2t - 4,$ $y = 4t - 8,$ $2 \le t \le 3.$

Show that $\int_{C_1} xy \, ds = \int_{C_3} xy \, ds$, but $\int_{C_1} xy \, ds \neq \int_{C_2} xy \, ds$. Explain.

39. Assume a smooth curve C is described by the vector function r(t) for a ≤ t ≤ b. Let acceleration, velocity, and speed be given by a = dv/dt, v = dr/dt, and v = ||v||, respectively. Using Newton's second law F = ma, show that, in the absence of friction, the work done by F in moving a particle of constant mass m from point A at t = a to point B at t = b is the same as the change in kinetic energy:

$$K(B) - K(A) = \frac{1}{2} m[v(b)]^2 - \frac{1}{2} m[v(a)]^2.$$

[*Hint*: Consider
$$\frac{d}{dt}v^2 = \frac{d}{dt}\mathbf{v} \cdot \mathbf{v}$$
.]

and

- **40.** If $\rho(x, y)$ is the density of a wire (mass per unit length), then $m = \int_C \rho(x, y) \, ds$ is the mass of the wire. Find the mass of a wire having the shape of the semicircle $x = 1 + \cos t$, $y = \sin t$, $0 \le t \le \pi$, if the density at a point *P* is directly proportional to distance from the *y*-axis.
- **41.** The coordinates of the center of mass of a wire with variable density are given by $\bar{x} = M_y/m$, $\bar{y} = M_x/m$, where

$$m = \int_{C} \rho(x, y) ds, \quad M_{x} = \int_{C} y \rho(x, y) ds$$
$$M_{y} = \int_{C} x \rho(x, y) ds.$$

Find the center of mass of the wire in Problem 40.

42. A force field $\mathbf{F}(x, y)$ acts at each point on the curve C, which is the union of C_1 , C_2 , and C_3 shown in **FIGURE 9.8.21**. $\|\mathbf{F}\|$ is measured in pounds and distance is measured in feet using the scale given in the figure. Use the representative vectors shown to approximate the work done by \mathbf{F} along C. [Hint: Use $W = \int_C \mathbf{F} \cdot \mathbf{T} \, ds$.]

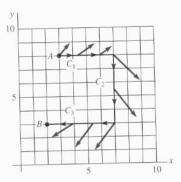


FIGURE 9.8.21 Force field in Problem 42