Exercise 9.8

9.8 Exercises Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1-4, evaluate $\int_{C} G(x, y) d x, \int_{C} G(x, y) d y$, and $\int_{C} G(x, y) d s$ on the indicated curve C.

1. $G(x, y)=2 x y ; x=5 \cos t, y=5 \sin t, 0 \leq t \leq \pi / 4$
2. $G(x, y)=x^{3}+2 x y^{2}+2 x ; x=2 t, y=t^{2}, 0 \leq t \leq 1$
3. $G(x, y)=3 x^{2}+6 y^{2} ; y=2 x+1,-1 \leq x \leq 0$
4. $G(x, y)=x^{2} / y^{3} ; 2 y=3 x^{2 / 3}, 1 \leq x \leq 8$

In Problems 5 and 6, evaluate $\int_{C} G(x, y, z) d x, \int_{C} G(x, y, z) d y$, $\int_{C} G(x, y, z) d z$, and $\int_{C} G(x, y, z) d s$ on the indicated curve C.
5. $G(x, y, z)=z ; x=\cos t, y=\sin t, z=t, 0 \leq t \leq \pi / 2$
6. $G(x, y, z)=4 x y z ; x=\frac{1}{3} t^{3}, y=t^{2}, z=2 t, 0 \leq t \leq 1$

In Problems $7-10$, evaluate $\int_{C}(2 x+y) d x+x y d y$ on the given curve C between $(-1,2)$ and $(2,5)$.
8. $y=x^{2}+1$
7. $y=x+3$

FIGURE 9.8.13 Curve C for Problem 9
10.

FIGURE 9.8.14 Curve C for Problem 10

In Problems 11-14, evaluate $\int_{C} y d x+x d y$ on the given curve C between $(0,0)$ and $(1,1)$.
11. $y=x^{2}$
12. $y=x$
13. C consists of the line segments from $(0,0)$ to $(0,1)$ and from $(0,1)$ to $(1,1)$.
14. C consists of the line segments from $(0,0)$ to $(1,0)$ and from $(1,0)$ to $(1,1)$.
15. Evaluate $\int_{C}\left(6 x^{2}+2 y^{2}\right) d x+4 x y d y$, where C is given by $x=\sqrt{t}, y=t, 4 \leq t \leq 9$.
16. Evaluate $\int_{C}-y^{2} d x+x y d y$, where C is given by $x=2 t$, $y=t^{3}, 0 \leq t \leq 2$.
17. Evaluate $\int_{C} 2 x^{3} y d x+(3 x+y) d y$, where C is given by $x=y^{2}$ from $(1,-1)$ to $(1,1)$.
18. Evaluate $\int_{C} 4 x d x+2 y d y$, where C is given by $x=y^{3}+1$ from $(0,-1)$ to $(9,2)$.
In Problems 19 and 20, evaluate $\oint_{C}\left(x^{2}+y^{2}\right) d x-2 x y d y$ on the given closed curve C.
19.

FIGURE 9.8.15 Closed curve C for Problem 19
20.

FIGURE 9.8.16 Closed curve C for Problem 20
In Problems 21 and 22, evaluate $\oint_{C} x^{2} y^{3} d x-x y^{2} d y$ on the given closed curve C.
21.

FIGURE 9.8.17 Closed curve C for Problem 21
22.

FIGURE 9.8.18 Closed curve C for Problem 22
23. Evaluate $\oint_{C}\left(x^{2}-y^{2}\right) d s$, where C is given by

$$
x=5 \cos t, \quad y=5 \sin t, \quad 0 \leq t \leq 2 \pi .
$$

24. Evaluate $\int_{-C} y d x-x d y$, where C is given by

$$
x=2 \cos t, \quad y=3 \sin t, \quad 0 \leq t \leq \pi
$$

In Problems 25-28, evaluate $\int_{C} y d x+z d y+x d z$ on the given curve C between $(0,0,0)$ and $(6,8,5)$.
25. C consists of the line segments from $(0,0,0)$ to $(2,3,4)$ and from $(2,3,4)$ to $(6,8,5)$.
26. $x=3 t, y=t^{3}, z=\frac{5}{4} t^{2}, \quad 0 \leq t \leq 2$
27.

FIGURE 9.8.19 Closed curve C for Problem 27
28.

FIGURE 9.8.20 Closed curve C for Problem 28
${ }_{n}$ Problems 29 and 30 , evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
29. $\mathbf{F}(x, y)=y^{3} \mathbf{i}-x^{2} y \mathbf{j} ; \mathbf{r}(t)=e^{-2 t} \mathbf{i}+e^{t} \mathbf{j}, 0 \leq t \leq \ln 2$
30. $\mathbf{F}(x, y, z)=e^{x} \mathbf{i}+x e^{x y} \mathbf{j}+x y e^{x y z} \mathbf{k} ; \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$, $0 \leq t \leq 1$
31. Find the work done by the force $\mathbf{F}(x, y)=y \mathbf{i}+x \mathbf{j}$ acting along $y=\ln x$ from $(1,0)$ to $(e, 1)$.
32. Find the work done by the force $\mathbf{F}(x, y)=2 x y \mathbf{i}+4 y^{2} \mathbf{j}$ acting along the piecewise-smooth curve consisting of the line segments from $(-2,2)$ to $(0,0)$ and from $(0,0)$ to $(2,3)$.
33. Find the work done by the force $\mathbf{F}(x, y)=(x+2 y) \mathbf{i}+$ $(6 y-2 x) \mathbf{j}$ acting counterclockwise once around the triangle with vertices $(1,1),(3,1)$, and (3,2).
34. Find the work done by the force $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$ acting along the curve given by $\mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$ from $t=1$ to $t=3$.
35. Find the work done by a constant force $\mathbf{F}(x, y)=a \mathbf{i}+b \mathbf{j}$ acting counterclockwise once around the circle $x^{2}+y^{2}=9$.
36. In an inverse square force field $\mathbf{F}=c \mathbf{r} /\|\mathbf{r}\|^{3}$, where c is a constant and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$,* find the work done in moving a particle along the line from $(1,1,1)$ to $(3,3,3)$.
37. Verify that the line integral $\int_{C} y^{2} d x+x y d y$ has the same value on C for each of the following parameterizations:

$$
\begin{array}{lll}
C: x=2 t+1, & y=4 t+2, & 0 \leq t \leq 1 \\
C: x=t^{2}, & y=2 t^{2}, & 1 \leq t \leq \sqrt{3} \\
C: x=\ln t, & y=2 \ln t, & e \leq t \leq e^{3} .
\end{array}
$$

38. Consider the three curves between $(0,0)$ and $(2,4)$:

$C_{1}: x=t$,	$y=2 t$,	$0 \leq t \leq 2$
$C_{2}: x=t$,	$y=t^{2}$,	$0 \leq t \leq 2$
$C_{3}: x=2 t-4$,	$y=4 t-8$,	$2 \leq t \leq 3$.

Show that $\int_{C_{1}} x y d s=\int_{C_{3}} x y d s$, but $\int_{C_{1}} x y d s \neq \int_{C_{2}} x y d s$. Explain.
39. Assume a smooth curve C is described by the vector function $\mathbf{r}(t)$ for $a \leq t \leq b$. Let acceleration, velocity, and speed be given by $\mathbf{a}=d \mathbf{v} / d t, \mathbf{v}=d \mathbf{r} / d t$, and $v=\|\mathbf{v}\|$, respectively. Using Newton's second law $\mathbf{F}=m \mathbf{a}$, show that, in the absence of friction, the work done by \mathbf{F} in moving a particle of constant mass m from point A at $t=a$ to point B at $t=b$ is the same as the change in kinetic energy:

$$
K(B)-K(A)=\frac{1}{2} m[v(b)]^{2}-\frac{1}{2} m[v(a)]^{2}
$$

[Hint: Consider $\frac{d}{d t} v^{2}=\frac{d}{d t} \mathbf{v} \cdot \mathbf{v}$.]
40. If $\rho(x, y)$ is the density of a wire (mass per unit length), then $m=\int_{C} \rho(x, y) d s$ is the mass of the wire. Find the mass of a wire having the shape of the semicircle $x=1+\cos t, y=\sin t$, $0 \leq t \leq \pi$, if the density at a point P is directly proportional to distance from the y-axis.
41. The coordinates of the center of mass of a wire with variable density are given by $\bar{x}=M_{y} / m, \bar{y}=M_{x} / m$, where

$$
\begin{gathered}
m=\int_{C} \rho(x, y) d s, \quad M_{x}=\int_{C} y \rho(x, y) d s \\
M_{y}=\int_{C} x \rho(x, y) d s
\end{gathered}
$$

and
Find the center of mass of the wire in Problem 40.
42. A force field $\mathbf{F}(x, y)$ acts at each point on the curve C, which is the union of C_{1}, C_{2}, and C_{3} shown in FIGURE 9.8.21. $\|\mathbf{F}\|$ is measured in pounds and distance is measured in feet using the scale given in the figure. Use the representative vectors shown to approximate the work done by \mathbf{F} along C. [Hint: Use $W=\int_{C} \mathbf{F} \cdot \mathbf{T} d s$.]

FIGURE 9.8.21 Force field in Problem 42

