Exercise 9.7

9.7 Exercises Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–6, graph some representative vectors in the given vector field.

1.
$$\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$$

2.
$$\mathbf{F}(x, y) = -x\mathbf{i} + y\mathbf{j}$$

$$\mathbf{3.} \ \mathbf{F}(x,y) = y\mathbf{i} + x\mathbf{j}$$

$$\mathbf{4.} \ \mathbf{F}(x, y) = x\mathbf{i} + 2y\mathbf{j}$$

5.
$$F(x, y) = y j$$

6.
$$F(x, y) = xj$$

In Problems 7–16, find the curl and the divergence of the given vector field.

7.
$$\mathbf{F}(x, y, z) = xz\mathbf{i} + yz\mathbf{j} + xy\mathbf{k}$$

8.
$$\mathbf{F}(x, y, z) = 10yz\mathbf{i} + 2x^2z\mathbf{j} + 6x^3\mathbf{k}$$

9.
$$\mathbf{F}(x, y, z) = 4xy\mathbf{i} + (2x^2 + 2yz)\mathbf{j} + (3z^2 + y^2)\mathbf{k}$$

10.
$$\mathbf{F}(x, y, z) = (x - y)^3 \mathbf{i} + e^{-yz} \mathbf{j} + xye^{2y} \mathbf{k}$$

11.
$$\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + 2xz^3\mathbf{j} + y^4\mathbf{k}$$

12.
$$\mathbf{F}(x, y, z) = 5y^3\mathbf{i} + (\frac{1}{2}x^3y^2 - xy)\mathbf{j} - (x^3yz - xz)\mathbf{k}$$

13.
$$\mathbf{F}(x, y, z) = xe^{-z}\mathbf{i} + 4yz^2\mathbf{j} + 3ye^{-z}\mathbf{k}$$

14.
$$\mathbf{F}(x, y, z) = yz \ln x \mathbf{i} + (2x - 3yz) \mathbf{j} + xy^2 z^3 \mathbf{k}$$

15.
$$\mathbf{F}(x, y, z) = xye^x \mathbf{i} - x^3 yze^z \mathbf{j} + xy^2 e^y \mathbf{k}$$

16.
$$\mathbf{F}(x, y, z) = x^2 \sin yz \mathbf{i} + z \cos xz^3 \mathbf{j} + ye^{5xy} \mathbf{k}$$

In Problems 17–24, let **a** be a constant vector and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Verify the given identity.

17. div
$$r = 3$$

18. curl
$$\mathbf{r} = \mathbf{0}$$

19.
$$(\mathbf{a} \times \nabla) \times \mathbf{r} = -2\mathbf{a}$$

20.
$$\nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$$

21.
$$\nabla \cdot (\mathbf{a} \times \mathbf{r}) = 0$$

22.
$$\mathbf{a} \times (\nabla \times \mathbf{r}) = \mathbf{0}$$

23.
$$\nabla \times [(\mathbf{r} \cdot \mathbf{r}) \mathbf{a}] = 2(\mathbf{r} \times \mathbf{a})$$

24.
$$\nabla \cdot [(\mathbf{r} \cdot \mathbf{r})\mathbf{a}] = 2(\mathbf{r} \cdot \mathbf{a})$$

In Problems 25–32, verify the given identity. Assume continuity of all partial derivatives.

25.
$$\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}$$

26.
$$\nabla \times (\mathbf{F} + \mathbf{G}) = \nabla \times \mathbf{F} + \nabla \times \mathbf{G}$$

27.
$$\nabla \cdot (f \mathbf{F}) = f(\nabla \cdot \mathbf{F}) + \mathbf{F} \cdot \nabla f$$

28.
$$\nabla \times (f \mathbf{F}) = f(\nabla \times \mathbf{F}) + (\nabla f) \times \mathbf{F}$$

29.
$$\operatorname{curl}(\operatorname{grad} f) = \mathbf{0}$$

30.
$$\operatorname{div}(\operatorname{curl} \mathbf{F}) = 0$$

31.
$$\operatorname{div}(F \times G) = G \cdot \operatorname{curl} F - F \cdot \operatorname{curl} G$$

32.
$$\operatorname{curl}(\operatorname{curl} \mathbf{F} + \operatorname{grad} f) = \operatorname{curl}(\operatorname{curl} \mathbf{F})$$

33. Show that

$$\nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} \left| + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right|.$$

This is known as the **Laplacian** and is also written $\nabla^2 f$.

- **34.** Show that $\nabla \cdot (f \nabla f) = f \nabla^2 f + ||\nabla f||^2$, where $\nabla^2 f$ is the Laplacian defined in Problem 33. [*Hint*: See Problem 27.]
- **35.** Find curl(curl **F**) for the vector field $\mathbf{F} = xy\mathbf{i} + 4yz^2\mathbf{j} + 2xz\mathbf{k}$
- **36.** (a) Assuming continuity of all partial derivatives, show that $\operatorname{curl}(\operatorname{curl} \mathbf{F}) = -\nabla^2 \mathbf{F} + \operatorname{grad}(\operatorname{div} \mathbf{F})$, where

$$\nabla^2 \mathbf{F} = \nabla^2 (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) = \nabla^2 P \mathbf{i} + \nabla^2 Q \mathbf{j} + \nabla^2 R \mathbf{k}.$$

- (b) Use the identity in part (a) to obtain the result in Problem 35.
- 37. Any scalar function f for which $\nabla^2 f = 0$ is said to be **harmonic**. Verify that $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$ is harmonic except at the origin. $\nabla^2 f = 0$ is called **Laplace's equation**.
- 38. Verify that

$$f(x, y) = \arctan\left(\frac{2}{x^2y^2 - 1}\right), \quad x^2 + y^2 \neq 1$$

satisfies Laplace's equation in two variables

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

39. Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be the position vector of a mass m_1 and let the mass m_2 be located at the origin. If the force of gravitational attraction is

$$\mathbf{F} = -\frac{Gm_1m_2}{\|\mathbf{r}\|^3}\,\mathbf{r},$$

verify that curl $\mathbf{F} = \mathbf{0}$ and div $\mathbf{F} = 0$, $\mathbf{r} \neq \mathbf{0}$.

40. Suppose a body rotates with a constant angular velocity ω about an axis. If \mathbf{r} is the position vector of a point P on the body measured from the origin, then the linear velocity vector \mathbf{v} of rotation is $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$. See **FIGURE 9.7.8**. If $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\boldsymbol{\omega} = \omega_1\mathbf{i} + \omega_2\mathbf{j} + \omega_3\mathbf{k}$, show that $\boldsymbol{\omega} = \frac{1}{2}$ curl \mathbf{v} .

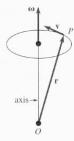


FIGURE 9.7.8 Rotating body in Problem 40

In Problems 41 and 42, assume that *f* and *g* have continuous second partial derivatives. Show that the given vector field is solenoidal. [*Hint*: See Problem 31.]

41.
$$\mathbf{F} = \nabla f \times \nabla g$$

42.
$$\mathbf{F} = \nabla f \times (f \nabla g)$$

43. The velocity vector field for the two-dimensional flow of an ideal fluid around a cylinder is given by

$$\mathbf{F}(x, y) = A \left[\left(1 - \frac{x^2 - y^2}{(x^2 + y^2)^2} \right) \mathbf{i} - \frac{2xy}{(x^2 + y^2)^2} \mathbf{j} \right]$$

for some positive constant A. See FIGURE 9.7.9.

- (a) Show that when the point (x, y) is far from the origin, $\mathbf{F}(x, y) \approx A \mathbf{i}$.
- (b) Show that **F** is irrotational.
- (c) Show that F is incompressible.

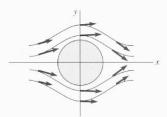


FIGURE 9.7.9 Vector field in Problem 43

44. If $\mathbf{E} = \mathbf{E}(x, y, z, t)$ and $\mathbf{H} = \mathbf{H}(x, y, z, t)$ represent electric and magnetic fields in empty space, then Maxwell's equations

$$\operatorname{div} \mathbf{E} = 0, \quad \operatorname{curl} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t},$$

$$\operatorname{div} \mathbf{H} = 0, \quad \operatorname{curl} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},$$

where c is the speed of light. Use the identity in Problem 36(a) to show that **E** and **H** satisfy

$$\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}, \quad \nabla^2 \mathbf{H} = \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2}.$$

45. Consider the vector field $\mathbf{F} = x^2yz\mathbf{i} - xy^2z\mathbf{j} + (z + 5x)\mathbf{k}$. Explain why \mathbf{F} is not the curl of another vector field \mathbf{G} .