Exercise 9.7

9.7 Exercises Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1-6, graph some representative vectors in the given vector field.

1. $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$
2. $\mathbf{F}(x, y)=-x \mathbf{i}+y \mathbf{j}$
3. $\mathbf{F}(x, y)=y \mathbf{i}+x \mathbf{j}$
4. $\mathbf{F}(x, y)=x \mathbf{i}+2 y \mathbf{j}$
5. $\mathbf{F}(x, y)=y \mathbf{j}$
6. $\mathbf{F}(x, y)=x \mathbf{j}$

In Problems 7-16, find the curl and the divergence of the given vector field.
7. $\mathbf{F}(x, y, z)=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$
8. $\mathbf{F}(x, y, z)=10 y z \mathbf{i}+2 x^{2} z \mathbf{j}+6 x^{3} \mathbf{k}$
9. $\mathbf{F}(x, y, z)=4 x y \mathbf{i}+\left(2 x^{2}+2 y z\right) \mathbf{j}+\left(3 z^{2}+y^{2}\right) \mathbf{k}$
10. $\mathbf{F}(x, y, z)=(x-y)^{3} \mathbf{i}+e^{-y z} \mathbf{j}+x y e^{2 y} \mathbf{k}$
11. $\mathbf{F}(x, y, z)=3 x^{2} y \mathbf{i}+2 x z^{3} \mathbf{j}+y^{4} \mathbf{k}$
12. $\mathbf{F}(x, y, z)=5 y^{3} \mathbf{i}+\left(\frac{1}{2} x^{3} y^{2}-x y\right) \mathbf{j}-\left(x^{3} y z-x z\right) \mathbf{k}$
13. $\mathbf{F}(x, y, z)=x e^{-z} \mathbf{i}+4 y z^{2} \mathbf{j}+3 y e^{-z} \mathbf{k}$
14. $\mathbf{F}(x, y, z)=y z \ln x \mathbf{i}+(2 x-3 y z) \mathbf{j}+x y^{2} z^{3} \mathbf{k}$
15. $\mathbf{F}(x, y, z)=x y e^{x} \mathbf{i}-x^{3} y z e^{z} \mathbf{j}+x y^{2} e^{y} \mathbf{k}$
16. $\mathbf{F}(x, y, z)=x^{2} \sin y z \mathbf{i}+z \cos x z^{3} \mathbf{j}+y e^{5 x y} \mathbf{k}$

In Problems 17-24, let a be a constant vector and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
Verify the given identity.
17. $\operatorname{div} \mathbf{r}=3$
18. $\operatorname{curl} \mathbf{r}=0$
19. $(\mathbf{a} \times \nabla) \times \mathbf{r}=-2 \mathbf{a}$
20. $\nabla \times(\mathbf{a} \times \mathbf{r})=2 \mathbf{a}$
21. $\nabla \cdot(\mathbf{a} \times \mathbf{r})=0$
22. $\mathbf{a} \times(\nabla \times \mathbf{r})=\mathbf{0}$
23. $\nabla \times[(\mathbf{r} \cdot \mathbf{r}) \mathbf{a}]=2(\mathbf{r} \times \mathbf{a})$
24. $\nabla \cdot[(\mathbf{r} \cdot \mathbf{r}) \mathbf{a}]=2(\mathbf{r} \cdot \mathbf{a})$

In Problems 25-32, verify the given identity. Assume continuity of all partial derivatives.
25. $\nabla \cdot(\mathbf{F}+\mathbf{G})=\nabla \cdot \mathbf{F}+\nabla \cdot \mathbf{G}$
26. $\nabla \times(\mathbf{F}+\mathbf{G})=\nabla \times \mathbf{F}+\nabla \times \mathbf{G}$
27. $\nabla \cdot(f \mathbf{F})=f(\nabla \cdot \mathbf{F})+\mathbf{F} \cdot \nabla f$
28. $\nabla \times(f \mathbf{F})=f(\nabla \times \mathbf{F})+(\nabla f) \times \mathbf{F}$
29. $\operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$
30. $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$
31. $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
32. $\operatorname{curl}(\operatorname{curl} \mathbf{F}+\operatorname{grad} f)=\operatorname{curl}(\operatorname{curl} \mathbf{F})$
33. Show that

$$
\nabla \cdot \nabla f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

This is known as the Laplacian and is also written $\nabla^{2} f$.
34. Show that $\nabla \cdot(f \nabla f)=f \nabla^{2} f+\|\nabla f\|^{2}$, where $\nabla^{2} f$ is the Laplacian defined in Problem 33. [Hint: See Problem 27.]
35. Find curl(curl \mathbf{F}) for the vector field $\mathbf{F}=x y \mathbf{i}+4 y z^{2} \mathbf{j}+$ $2 x z \mathbf{k}$.
36. (a) Assuming continuity of all partial derivatives, show that $\operatorname{curl}(\operatorname{curl} \mathbf{F})=-\nabla^{2} \mathbf{F}+\operatorname{grad}(\operatorname{div} \mathbf{F})$, where

$$
\nabla^{2} \mathbf{F}=\nabla^{2}(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k})=\nabla^{2} P \mathbf{i}+\nabla^{2} Q \mathbf{j}+\nabla^{2} R \mathbf{k}
$$

(b) Use the identity in part (a) to obtain the result in Problem 35.
37. Any scalar function f for which $\nabla^{2} f=0$ is said to be harmonic. Verify that $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ is harmonic except at the origin. $\nabla^{2} f=0$ is called Laplace's equation.
38. Verify that

$$
f(x, y)=\arctan \left(\frac{2}{x^{2} y^{2}-1}\right), \quad x^{2}+y^{2} \neq 1
$$

satisfies Laplace's equation in two variables

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

39. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be the position vector of a mass m_{1} and let the mass m_{2} be located at the origin. If the force of gravitational attraction is

$$
\mathbf{F}=-\frac{G m_{1} m_{2}}{\|\mathbf{r}\|^{3}} \mathbf{r}
$$

verify that curl $\mathbf{F}=\mathbf{0}$ and $\operatorname{div} \mathbf{F}=0, \mathbf{r} \neq \mathbf{0}$.
40. Suppose a body rotates with a constant angular velocity ω about an axis. If \mathbf{r} is the position vector of a point P on the body measured from the origin, then the linear velocity vector \mathbf{v} of rotation is $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$. See FIGURE 9.7.8. If $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\omega=\omega_{1} \mathbf{i}+\omega_{2} \mathbf{j}+\omega_{3} \mathbf{k}$, show that $\omega=\frac{1}{2} \operatorname{curl} \mathbf{v}$.

FIGURE 9.7.8 Rotating body in Problem 40
In Problems 41 and 42 , assume that f and g have continuous second partial derivatives. Show that the given vector field is solenoidal. [Hint: See Problem 31.]
41. $\mathbf{F}=\nabla f \times \nabla g$
42. $\mathbf{F}=\nabla f \times(f \nabla g)$
43. The velocity vector field for the two-dimensional flow of an ideal fluid around a cylinder is given by

$$
\mathbf{F}(x, y)=A\left[\left(1-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \mathbf{i}-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \mathbf{j}\right]
$$

for some positive constant A. See FIGURE 9.7.9.
(a) Show that when the point (x, y) is far from the origin, $\mathbf{F}(x, y) \approx A \mathbf{i}$.
(b) Show that \mathbf{F} is irrotational.
(c) Show that \mathbf{F} is incompressible.

FIGURE 9.7.9 Vector field in Problem 43
44. If $\mathbf{E}=\mathbf{E}(x, y, z, t)$ and $\mathbf{H}=\mathbf{H}(x, y, z, t)$ represent electric and magnetic fields in empty space, then Maxwell's equations are

$$
\begin{aligned}
& \operatorname{div} \mathbf{E}=0, \quad \operatorname{curl} \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}, \\
& \operatorname{div} \mathbf{H}=0, \quad \operatorname{curl} \mathbf{H}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},
\end{aligned}
$$

where c is the speed of light. Use the identity in Problem 36(a) to show that \mathbf{E} and \mathbf{H} satisfy

$$
\nabla^{2} \mathbf{E}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}, \quad \nabla^{2} \mathbf{H}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{H}}{\partial t^{2}} .
$$

45. Consider the vector field $\mathbf{F}=x^{2} y z \mathbf{i}-x y^{2} z \mathbf{j}+(z+5 x) \mathbf{k}$. Explain why \mathbf{F} is not the curl of another vector field \mathbf{G}.
