Exercise 9.16

9.16 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1 and 2, verify the divergence theorem.

1. $\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k} ; D$ the region bounded by the unit cube defined by $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$
2. $\mathbf{F}=6 x y \mathbf{i}+4 y z \mathbf{j}+x e^{-y} \mathbf{k} ; D$ the region bounded by the three coordinate planes and the plane $x+y+z=1$
In Problems 3-14, use the divergence theorem to find the outward flux $\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S$ of the given vector field \mathbf{F}.
3. $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k} ; D$ the region bounded by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
4. $\mathbf{F}=4 x \mathbf{i}+y \mathbf{j}+4 z \mathbf{k} ; D$ the region bounded by the sphere $x^{2}+y^{2}+z^{2}=4$
5. $\mathbf{F}=y^{2} \mathbf{i}+x z^{3} \mathbf{j}+(z-1)^{2} \mathbf{k} ; D$ the region bounded by the cylinder $x^{2}+y^{2}=16$ and the planes $z=1, z=5$
6. $\mathbf{F}=x^{2} \mathbf{i}+2 y z \mathbf{j}+4 z^{3} \mathbf{k} ; D$ the region bounded by the parallelepiped defined by $0 \leq x \leq 1,0 \leq y \leq 2,0 \leq z \leq 3$
7. $\mathbf{F}=y^{3} \mathbf{i}+x^{3} \mathbf{j}+z^{3} \mathbf{k} ; D$ the region bounded within by $z=\sqrt{4-x^{2}-y^{2}}, x^{2}+y^{2}=3, z=0$
8. $\mathbf{F}=\left(x^{2}+\sin y\right) \mathbf{i}+z^{2} \mathbf{j}+x y^{3} \mathbf{k} ; D$ the region bounded by $y=x^{2}, z=9-y, z=0$
9. $\mathbf{F}=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) /\left(x^{2}+y^{2}+z^{2}\right) ; D$ the region bounded by the concentric spheres $x^{2}+y^{2}+z^{2}=a^{2}, x^{2}+y^{2}+z^{2}=b^{2}$, $b>a$
10. The electric field at a point $P(x, y, z)$ due to a point charge q located at the origin is given by the inverse square field

$$
E=q \frac{\mathbf{r}}{\|\mathbf{r}\|^{3}},
$$

where $r=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
(a) Suppose S is a closed surface, S_{a} is a sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying completely within S, and D is the region bounded between S and S_{a}. See FIGURE 9.16.7. Show that the outward flux of \mathbf{E} for the region D is zero.
(b) Use the result of part (a) to prove Gauss' law:

$$
\iint_{S}(\mathbf{E} \cdot \mathbf{n}) d S=4 \pi q
$$

that is, the outward flux of the electric field \mathbf{E} through any closed surface (for which the divergence theorem applies) containing the origin is $4 \pi q$.
10. $\mathbf{F}=2 y z \mathbf{i}+x^{3} \mathbf{j}+x y^{2} \mathbf{k} ; D$ the region bounded by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$
11. $\mathbf{F}=2 x z \mathbf{i}+5 y^{2} \mathbf{j}-z^{2} \mathbf{k} ; D$ the region bounded by $z=y$. $z=4-y, z=2-\frac{1}{2} x^{2}, x=0, z=0$. See FIGURE 9.16.6.

FIGURE 9.16.6 Region D for Problem 11
12. $\mathbf{F}=15 x^{2} y \mathbf{i}+x^{2} z \mathbf{j}+y^{4} \mathbf{k} ; D$ the region bounded by $x+y=2$. $z=x+y, z=3, x=0, y=0$
13. $\mathbf{F}=3 x^{2} y^{2} \mathbf{i}+y \mathbf{j}-6 z x y^{2} \mathbf{k} ; D$ the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=2 y$
14. $\mathbf{F}=x y^{2} \mathbf{i}+x^{2} y \mathbf{j}+6 \sin x \mathbf{k} ; D$ the region bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the planes $z=2, z=4$

In Problems 17-21, assume that S forms the boundary of a closed and bounded region D.
17. If a is a constant vector, show that $\iint_{S}(\mathbf{a} \cdot \mathbf{n}) d S=0$.
18. If $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ and P, Q, and R have continuous second partial derivatives, prove that

$$
\iint_{S}(\operatorname{curl} \mathbf{F} \cdot \mathbf{n}) d S=0
$$

In Problems 19 and 20, assume that f and g are scalar functions with continuous second partial derivatives. Use the divergence theorem to establish Green's identities.
19. $\iint_{S}(f \nabla g) \cdot \mathbf{n} d S=\iiint_{D}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V$
20. $\iint_{S}(f \nabla g-g \nabla f) \cdot \mathbf{n} d S=\iiint_{D}\left(f \nabla^{2} g-g \nabla^{2} f\right) d V$
21. If f is a scalar function with continuous first partial derivatives, prove that

FIGURE 9.16.7 Region D for
Problem 15(a)
16. Suppose there is a continuous distribution of charge throughout a closed and bounded region D enclosed by a surface S.
Then the natural extension of Gauss' law is given by

$$
\iint_{S}(\mathbf{E} \cdot \mathbf{n}) d S=\iiint_{D} 4 \pi \rho d V
$$

where $\rho(x, y, z)$ is the charge density or charge per unit volume. (a) Proceed as in the derivation of the continuity equation (16) to show that $\operatorname{div} \mathbf{E}=4 \pi \rho$.
(b) Given that \mathbf{E} is an irrotational vector field, show that the potential ϕ for \mathbf{E} satisfies Poisson's equation $\nabla^{2} \phi=4 \pi \rho$.
piure mat

$$
\iint_{S} f \mathbf{n} d S=\iiint_{D} \nabla f d V
$$

[Hint: Use (2) on fa, where a is a constant vector, and Problem 27 in Exercises 9.7.]
22. The buoyancy force on a floating object is $\mathbf{B}=-\iint_{S} p \mathbf{n} d S$, where p is the fluid pressure. The pressure p is related to the density of the fluid $\rho(x, y, z)$ by a law of hydrostatics: $\nabla p=\rho(x, y, z) \mathbf{g}$, where \mathbf{g} is the constant acceleration of gravity. If the weight of the object is $\mathbf{W}=m \mathbf{g}$, use the result of Problem 21 to prove Archimedes' principle, $\mathbf{B}+\mathbf{W}=\mathbf{0}$. See FIGURE 9.16.8.

FIGURE 9.16.8 Floating object in Problem 22

