## Exercise 9.15

### 9.15 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1-8, evaluate the given iterated integral.

1. $\int_{2}^{4} \int_{-2}^{2} \int_{-1}^{1}(x+y+z) d x d y d z$
2. $\int_{1}^{3} \int_{1}^{x} \int_{2}^{x y} 24 x y d z d y d x$
3. $\int_{0}^{6} \int_{0}^{6-x} \int_{0}^{6-x-z} d y d z d x$
4. $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{\sqrt{y}} 4 x^{2} z^{3} d z d y d x$
5. $\int_{0}^{\pi / 2} \int_{0}^{y^{2}} \int_{0}^{y} \cos \left(\frac{x}{y}\right) d z d x d y$
6. $\int_{0}^{\sqrt{2}} \int_{\sqrt{y}}^{2} \int_{0}^{e^{e^{2}}} x d z d x d y$
7. $\int_{0}^{2} \int_{0}^{\sqrt{36-9 x^{2} / 2}} \int_{1}^{3} F(x, y, z) d z d y d x$

In Problems 13 and 14, consider the solid given in the figure. Set up, but do not evaluate, the integrals giving the volume $V$ of the solid using the indicated orders of integration.
13.


FIGURE 9.15.14 Solid for Problem 13
(a) $d z d y d x$
(b) $d x d z d y$
(c) $d y d x d z$
14.

7. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{2-x^{2}-y^{2}} x y e^{2} d z d x d y$
8. $\int_{0}^{4} \int_{0}^{1 / 2} \int_{0}^{x^{2}} \frac{1}{\sqrt{x^{2}-y^{2}}} d y d x d z$
9. Evaluate $\iiint_{D} z d V$, where $D$ is the region in the first octant bounded by the graphs of $y=x, y=x-2, y=1, y=3$, $z=0$, and $z=5$.
10. Evaluate $\iiint_{D}\left(x^{2}+y^{2}\right) d V$, where $D$ is the region bounded by the graphs of $y=x^{2}, z=4-y$, and $z=0$.

In Problems 11 and 12, change the indicated order of integration to each of the other five orders.
11. $\int_{0}^{2} \int_{0}^{4-2 y} \int_{x+2 y}^{4} F(x, y, z) d z d x d y$
24. $x=2, y=x, \quad y=0, z=x^{2}+y^{2}, \quad z=0$
25. Find the center of mass of the solid given in Figure 9.15.14 if the density at a point $P$ is directly proportional to the distance from the $x y$-plane.
26. Find the centroid of the solid in FIGURE 9.15 .15 if the density is constant.
27. Find the center of mass of the solid bounded by the graphs of $x^{2}+z^{2}=4, y=0$, and $y=3$ if the density at a point $P$ is directly proportional to the distance from the $x z$-plane.
28. Find the center of mass of the solid bounded by the graphs of $y=x^{2}, y=x, z=y+2$, and $z=0$ if the density at a point $P$ is directly proportional to the distance from the $x y$-plane.
In Problems 29 and 30, set up, but do not evaluate, the iterated integrals giving the mass of the solid that has the given shape and density.
29. $x^{2}+y^{2}=1, z+y=8, z-2 y=2 ; \rho(x, y, z)=x+y+4$
30. $x^{2}+y^{2}-z^{2}=1, z=-1, z=2 ; \rho(x, y, z)=z^{2}$ [Hint: $\mathrm{D}_{0}$ not use $d z d y d x$.]
31. Find the moment of inertia of the solid in Figure 9.15.14 about the $y$-axis if the density is as given in Problem 25. Find the radius of gyration.
32. Find the moment of inertia of the solid in Figure 9.15.15 about the $x$-axis if the density is constant. Find the radius of gyration,
33. Find the moment of inertia about the $z$-axis of the solid in the first octant that is bounded by the coordinate planes and the graph of $x+y+z=1$ if the density is constant.

FIGURE 9.15.15 Solid for Problem 14
(a) $d x d z d y$
(b) $d y d x d z$
(c) $d z d x d y$
[Hint: Part (c) will require two integrals.]
In Problems $15-20$, sketch the region $D$ whose volume $V$ is given by the iterated integral.
15. $\int_{0}^{4} \int_{0}^{3} \int_{0}^{2-2 z / 3} d x d z d y$
16. $4 \int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{4}^{\sqrt{25-x^{2}-y^{2}}} d z d x d y$
17. $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{5} d z d y d x$
18. $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} d z d y d x$
19. $\int_{0}^{2} \int_{0}^{2-y} \int_{-\sqrt{y}}^{\sqrt{y}} d x d z d y$
20. $\int_{1}^{3} \int_{0}^{1 / x} \int_{0}^{3} d y d z d x$

In Problems 21-24, find the volume of the solid bounded by the graphs of the given equations.
21. $x=y^{2}, 4-x=y^{2}, \quad z=0, \quad z=3$
22. $x^{2}+y^{2}=4, z=x+y$, the coordinate planes, first octant
23. $y=x^{2}+z^{2}, \quad y=8-x^{2}-z^{2}$
52. $z=10-x^{2}-y^{2}, \quad z=1$
53. $z=x^{2}+y^{2}, x^{2}+y^{2}=25, \quad z=0$
54. $y=x^{2}+z^{2}, \quad 2 y=x^{2}+z^{2}+4$
55. Find the centroid of the homogeneous solid that is bounded by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and the plane $z=0$.
56. Find the center of mass of the solid that is bounded by the graphs of $y^{2}+z^{2}=16, x=0$, and $x=5$ if the density at a point $P$ is directly proportional to distance from the $y z$-plane.
57. Find the moment of inertia about the $z$-axis of the solid that is bounded above by the hemisphere $z=\sqrt{9-x^{2}-y^{2}}$ and below by the plane $z=2$ if the density at a point $P$ is inversely proportional to the square of the distance from the $z$-axis.
58. Find the moment of inertia about the $x$-axis of the solid that is bounded by the cone $z=\sqrt{x^{2}-y^{2}}$ and the plane $z=1$ if the density at a point $P$ is directly proportional to the distance from the $z$-axis.

In Problems 59-62, convert the point given in spherical coordinates to (a) rectangular coordinates and (b) cylindrical coordinates.
59. $\left(\frac{2}{3}, \frac{\pi}{2}, \frac{\pi}{6}\right)$
60. $\left(5, \frac{5 \pi}{4}, \frac{2 \pi}{3}\right)$
61. $\left(8, \frac{\pi}{4}, \frac{3 \pi}{4}\right)$
62. $\left(\frac{1}{3}, \frac{5 \pi}{3}, \frac{\pi}{6}\right)$

In Problems 63-66, convert the points given in rectangular coordinates to spherical coordinates.
63. $(-5,-5,0)$
64. $(1,-\sqrt{3}, 1)$
65. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 1\right)$
66. $\left(-\frac{\sqrt{3}}{2}, 0,-\frac{1}{2}\right)$
34. Find the moment of inertia about the $y$-axis of the solid bounded by the graphs of $z=y, z=4-y, z=1, z=0, x=2$, and $x=0$ if the density at a point $P$ is directly proportional to the distance from the $y z$-plane.

In Problems 35-38, convert the point given in cylindrical coordinates to rectangular coordinates.
35. $\left(10, \frac{3 \pi}{4}, 5\right)$
36. $\left(2, \frac{5 \pi}{6},-3\right)$
37. $\left(\sqrt{3}, \frac{\pi}{3},-4\right)$
38. $\left(4, \frac{7 \pi}{4}, 0\right)$

In Problems 39-42, convert the point given in rectangular coordinates to cylindrical coordinates.
39. $(1,-1,-9)$
40. $(2 \sqrt{3}, 2,17)$
41. $(-\sqrt{2}, \sqrt{6}, 2)$
42. $(1,2,7)$

In Problems 43-46, convert the given equation to cylindrical coordinates.
43. $x^{2}+y^{2}+z^{2}=25$
44. $x+y-z=1$
45. $x^{2}+y^{2}-z^{2}=1$
46. $x^{2}+z^{2}=16$

In Problems 47-50, convert the given equation to rectangular coordinates.
47. $z=r^{2}$
48. $z=2 r \sin \theta$
49. $r=5 \sec \theta$
50. $\theta=\pi / 6$

In Problems 51-58, use triple integrals and cylindrical coordinates. In Problems 51-54, find the volume of the solid that is bounded by the graphs of the given equations.
51. $x^{2}+y^{2}=4, x^{2}+y^{2}+z^{2}=16, z=0$

In Problems 67-70, convert the given equation to spherical coordinates.
67. $x^{2}+y^{2}+z^{2}=64$
68. $x^{2}+y^{2}+z^{2}=4 z$
69. $z^{2}=3 x^{2}+3 y^{2}$
70. $-x^{2}-y^{2}+z^{2}=1$

In Problems 71-74, convert the given equation to rectangular coordinates.
71. $\rho=10$
72. $\phi=\pi / 3$
73. $\rho=2 \sec \phi$
74. $\rho \sin ^{2} \phi=\cos \phi$

In Problems 75-82, use triple integrals and spherical coordinates. In Problems 75-78, find the volume of the solid that is bounded by the graphs of the given equations.
75. $z=\sqrt{x^{2}+y^{2}}, x^{2}+y^{2}+z^{2}=9$
76. $x^{2}+y^{2}+z^{2}=4, y=x, y=\sqrt{3} x, z=0$, first octant
77. $z^{2}=3 x^{2}+3 y^{2}, x=0, \quad y=0, z=2$, first octant
78. Inside $x^{2}+y^{2}+z^{2}=1$ and outside $z^{2}=x^{2}+y^{2}$
79. Find the centroid of the homogeneous solid that is bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2 z$.
80. Find the center of mass of the solid that is bounded by the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and the plane $z=0$ if the density at a point $P$ is directly proportional to the distance from the $x y$-plane.
81. Find the mass of the solid that is bounded above by the hemisphere $z=\sqrt{25-x^{2}-y^{2}}$ and below by the plane $z=4$ if the density at a point $P$ is inversely proportional to the distance from the origin. [Hint: Express the upper $\phi$ limit of integration as an inverse cosine.]
82. Find the moment of inertia about the $z$-axis of the solid that is bounded by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ if the density at a point $P$ is directly proportional to the distance from the origin.

