Exercise 9.15

9.15 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1-8, evaluate the given iterated integral.

1.
$$\int_{2}^{4} \int_{-2}^{2} \int_{-1}^{1} (x + y + z) dx dy dz$$

2.
$$\int_{1}^{3} \int_{1}^{x} \int_{2}^{xy} 24xy \, dz \, dy \, dx$$

3.
$$\int_{0}^{6} \int_{0}^{6-x} \int_{0}^{6-x-z} dy \, dz \, dx$$

4.
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{\sqrt{y}} 4x^{2}z^{3} dz dy dx$$

5.
$$\int_0^{\pi/2} \int_0^{y^2} \int_0^y \cos\left(\frac{x}{y}\right) dz \, dx \, dy$$

6.
$$\int_0^{\sqrt{2}} \int_{\sqrt{y}}^2 \int_0^{e^{x^2}} x \, dz \, dx \, dy$$

7.
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{2-x^2-y^2} xye^z dz dx dy$$

8.
$$\int_0^4 \int_0^{1/2} \int_0^{x^2} \frac{1}{\sqrt{x^2 - y^2}} \, dy \, dx \, dz$$

9. Evaluate $\iiint_D z \, dV$, where D is the region in the first octant bounded by the graphs of y = x, y = x - 2, y = 1, y = 3, z = 0, and z = 5.

10. Evaluate $\iiint_D (x^2 + y^2) dV$, where D is the region bounded by the graphs of $y = x^2$, z = 4 - y, and z = 0.

In Problems 11 and 12, change the indicated order of integration to each of the other five orders.

11.
$$\int_0^2 \int_0^{4-2y} \int_{x+2y}^4 F(x, y, z) \, dz \, dx \, dy$$

12.
$$\int_0^2 \int_0^{\sqrt{36-9x^2}/2} \int_1^3 F(x, y, z) \, dz \, dy \, dx$$

In Problems 13 and 14, consider the solid given in the figure. Set up, but do not evaluate, the integrals giving the volume V of the solid using the indicated orders of integration.

FIGURE 9.15.14 Solid for Problem 13

(a)
$$dz dy dx$$
 (b) $dx dz$

(b)
$$dx dz dy$$
 (c) $dy dx dz$

14.

24.
$$x = 2$$
, $y = x$, $y = 0$, $z = x^2 + y^2$, $z = 0$

25. Find the center of mass of the solid given in FIGURE 9.15.14 if the density at a point P is directly proportional to the distance from the xy-plane.

Find the centroid of the solid in FIGURE 9.15.15 if the density is

27. Find the center of mass of the solid bounded by the graphs of $x^2 + z^2 = 4$, y = 0, and y = 3 if the density at a point P is directly proportional to the distance from the xz-plane.

28. Find the center of mass of the solid bounded by the graphs of $y = x^2$, y = x, z = y + 2, and z = 0 if the density at a point P is directly proportional to the distance from the xy-plane.

In Problems 29 and 30, set up, but do not evaluate, the iterated integrals giving the mass of the solid that has the given shape and density.

29.
$$x^2 + y^2 = 1$$
, $z + y = 8$, $z - 2y = 2$; $\rho(x, y, z) = x + y + 4$

29.
$$x^2 + y^2 = 1$$
, $z + y = 8$, $z - 2y = 2$; $\rho(x, y, z) = x + y + 4$
30. $x^2 + y^2 - z^2 = 1$, $z = -1$, $z = 2$; $\rho(x, y, z) = z^2$ [*Hint*: Do not use $dz dy dx$.]

31. Find the moment of inertia of the solid in Figure 9.15.14 about the y-axis if the density is as given in Problem 25. Find the radius of gyration.

32. Find the moment of inertia of the solid in Figure 9.15.15 about the x-axis if the density is constant. Find the radius of

33. Find the moment of inertia about the z-axis of the solid in the first octant that is bounded by the coordinate planes and the graph of x + y + z = 1 if the density is constant.

FIGURE 9.15.15 Solid for Problem 14

(a) dx dz dy

(b) dy dx dz (c) dz dx dy

[Hint: Part (c) will require two integrals.]

In Problems 15–20, sketch the region D whose volume V is given by the iterated integral.

15.
$$\int_{0}^{4} \int_{0}^{3} \int_{0}^{2-2z/3} dx \, dz \, dy$$

16.
$$4 \int_{0}^{3} \int_{0}^{\sqrt{9-y^2}} \int_{4}^{\sqrt{25-x^2-y^2}} dz dx dy$$

17.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{5} dz \, dy \, dx$$

18.
$$\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{x^2+y^2}^4 dz \, dy \, dx$$

19.
$$\int_0^2 \int_0^{2-y} \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dz \, dy$$

20.
$$\int_{1}^{3} \int_{0}^{1/x} \int_{0}^{3} dy \, dz \, dx$$

In Problems 21-24, find the volume of the solid bounded by the graphs of the given equations.

21.
$$x = y^2$$
, $4 - x = y^2$, $z = 0$, $z = 3$

22.
$$x^2 + y^2 = 4$$
, $z = x + y$, the coordinate planes, first octant **23.** $y = x^2 + z^2$, $y = 8 - x^2 - z^2$

23.
$$y = x^2 + z^2$$
, $y = 8 - x^2 - z^2$

52.
$$z = 10 - x^2 - y^2$$
, $z = 1$

53.
$$z = x^2 + y^2$$
, $x^2 + y^2 = 25$, $z = 0$

54.
$$y = x^2 + z^2$$
, $2y = x^2 + z^2 + 4$

55. Find the centroid of the homogeneous solid that is bounded by the hemisphere
$$z = \sqrt{a^2 - x^2 - y^2}$$
 and the plane $z = 0$.

- 57. Find the moment of inertia about the z-axis of the solid that is bounded above by the hemisphere $z = \sqrt{9 - x^2 - y^2}$ and below by the plane z = 2 if the density at a point P is inversely proportional to the square of the distance from the
- 58. Find the moment of inertia about the x-axis of the solid that is bounded by the cone $z = \sqrt{x^2 - y^2}$ and the plane z = 1 if the density at a point P is directly proportional to the distance from the z-axis.

In Problems 59-62, convert the point given in spherical coordinates to (a) rectangular coordinates and (b) cylindrical

59.
$$\left(\frac{2}{3}, \frac{\pi}{2}, \frac{\pi}{6}\right)$$

59.
$$\left(\frac{2}{3}, \frac{\pi}{2}, \frac{\pi}{6}\right)$$
 60. $\left(5, \frac{5\pi}{4}, \frac{2\pi}{3}\right)$

61.
$$\left(8, \frac{\pi}{4}, \frac{3\pi}{4}\right)$$

62.
$$\left(\frac{1}{3}, \frac{5\pi}{3}, \frac{\pi}{6}\right)$$

In Problems 63-66, convert the points given in rectangular coordinates to spherical coordinates.

63.
$$(-5, -5, 0)$$

64.
$$(1, -\sqrt{3}, 1)$$

65.
$$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 1\right)$$

66.
$$\left(-\frac{\sqrt{3}}{2}, 0, -\frac{1}{2}\right)$$

34. Find the moment of inertia about the y-axis of the solid bounded by the graphs of z = y, z = 4 - y, z = 1, z = 0, x = 2, and x = 0 if the density at a point P is directly proportional to the distance from the yz-plane.

In Problems 35-38, convert the point given in cylindrical coordinates to rectangular coordinates.

35.
$$\left(10, \frac{3\pi}{4}, 5\right)$$
 36. $\left(2, \frac{5\pi}{6}, -3\right)$

36.
$$\left(2, \frac{5\pi}{6}, -3\right)$$

37.
$$\left(\sqrt{3}, \frac{\pi}{3}, -4\right)$$
 38. $\left(4, \frac{7\pi}{4}, 0\right)$

38.
$$\left(4, \frac{7\pi}{4}, 0\right)$$

In Problems 39-42, convert the point given in rectangular coordinates to cylindrical coordinates.

40.
$$(2\sqrt{3}, 2, 17)$$

41.
$$(-\sqrt{2}, \sqrt{6}, 2)$$

In Problems 43-46, convert the given equation to cylindrical coordinates.

43.
$$x^2 + y^2 + z^2 = 25$$
 44. $x + y - z = 1$ **45.** $x^2 + y^2 - z^2 = 1$ **46.** $x^2 + z^2 = 16$

44.
$$x + y - z =$$

45.
$$x^2 + y^2 - z^2 = 1$$

46.
$$x^2 + z^2 = 16$$

In Problems 47–50, convert the given equation to rectangular coordinates.

47.
$$z = r^2$$

48.
$$z = 2r \sin \theta$$
 50. $\theta = \pi/6$

49.
$$r = 5 \sec \theta$$

50.
$$\theta = \pi \theta$$

In Problems 51-58, use triple integrals and cylindrical coordinates. In Problems 51-54, find the volume of the solid that is bounded by the graphs of the given equations.

51.
$$x^2 + y^2 = 4$$
, $x^2 + y^2 + z^2 = 16$, $z = 0$

In Problems 67-70, convert the given equation to spherical coordinates.

67.
$$x^2 + y^2 + z^2 = 64$$
 68. $x^2 + y^2 + z^2 = 4z$ **69.** $z^2 = 3x^2 + 3y^2$ **70.** $-x^2 - y^2 + z^2 = 1$

68
$$x^2 + y^2 + z^2 = 4$$

69.
$$z^2 = 3x^2 + 3y^2$$

70.
$$-x^2 - y^2 + z^2 =$$

In Problems 71-74, convert the given equation to rectangular coordinates.

71.
$$\rho = 10$$

72.
$$\phi = \pi/3$$

73.
$$\rho = 2 \sec \phi$$

74.
$$\rho \sin^2 \phi = \cos \phi$$

In Problems 75-82, use triple integrals and spherical coordinates. In Problems 75-78, find the volume of the solid that is bounded by the graphs of the given equations.

75.
$$z = \sqrt{x^2 + y^2}$$
, $x^2 + y^2 + z^2 = 9$

76.
$$x^2 + y^2 + z^2 = 4$$
, $y = x$, $y = \sqrt{3}x$, $z = 0$, first octant

77.
$$z^2 = 3x^2 + 3y^2$$
, $x = 0$, $y = 0$, $z = 2$, first octant

78. Inside
$$x^2 + y^2 + z^2 = 1$$
 and outside $z^2 = x^2 + y^2$

- 79. Find the centroid of the homogeneous solid that is bounded by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 2z$.
- 80. Find the center of mass of the solid that is bounded by the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and the plane z = 0 if the density at a point P is directly proportional to the distance from the xy-plane.
- 81. Find the mass of the solid that is bounded above by the hemisphere $z = \sqrt{25 - x^2 - y^2}$ and below by the plane z = 4 if the density at a point P is inversely proportional to the distance from the origin. [Hint: Express the upper ϕ limit of integration as an inverse cosine.]
- 82. Find the moment of inertia about the z-axis of the solid that is bounded by the sphere $x^2 + y^2 + z^2 = a^2$ if the density at a point P is directly proportional to the distance from the origin.