Exercise 9.14

9.14 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1-4, verify Stokes' theorem. Assume that the surface S is oriented upward.

1. $\mathbf{F}=5 y \mathbf{i}-5 x \mathbf{j}+3 \mathbf{k} ; S$ that portion of the plane $z=1$ within the cylinder $x^{2}+y^{2}=4$
2. $\mathbf{F}=2 z \mathbf{i}-3 x \mathbf{j}+4 y \mathbf{k}$; S that portion of the paraboloid $z=16-x^{2}-y^{2}$ for $z \geq 0$
3. $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k} ; S$ that portion of the plane $2 x+y+2 z=6$ in the first octant
4. $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} ; S$ that portion of the sphere $x^{2}+y^{2}+z^{2}=1$ for $z \geq 0$

In Problems 5-12, use Stokes' theorem to evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. Assume C is oriented counterclockwise as viewed from above.
5. $\mathbf{F}=(2 z+x) \mathbf{i}+(y-z) \mathbf{j}+(x+y) \mathbf{k} ; C$ the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$
6. $\mathbf{F}=z^{2} y \cos x y \mathbf{i}+z^{2} x(1+\cos x y) \mathbf{j}+2 z \sin x y \mathbf{k} ; C$ the boundary of the plane $z=1-y$ shown in FIGURE 9.14.7.

FIGURE 9.14.7 Curve C for Problem 6
7. $\mathbf{F}=x y \mathbf{i}+2 y z \mathbf{j}+x z \mathbf{k} ; C$ the boundary given in Problem 6
8. $\mathbf{F}=(x+2 z) \mathbf{i}+(3 x+y) \mathbf{j}+(2 y-z) \mathbf{k}$; C the curve of intersection of the plane $x+2 y+z=4$ with the coordinate planes
9. $\mathbf{F}=y^{3} \mathbf{i}-x^{3} \mathbf{j}+z^{3} \mathbf{k} ; C$ the trace of the cylinder $x^{2}+y^{2}=1$ in the plane $x+y+z=1$
10. $\mathbf{F}=x^{2} y \mathbf{i}+\left(x+y^{2}\right) \mathbf{j}+x y^{2} z \mathbf{k} ; C$ the boundary of the surface shown in FIGURE 9.14.8

FIGURE 9.14.8 Curve C for Problem 10
11. $\mathbf{F}=x \mathbf{i}+x^{3} y^{2} \mathbf{j}+z \mathbf{k} ; C$ the boundary of the semi-ellipsoid $z=\sqrt{4-4 x^{2}-y^{2}}$ in the plane $z=0$
12. $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k} ; C$ the curve of intersection of the plane $x+y+z=0$ and the sphere $x^{2}+y^{2}+z^{2}=1$ [Hint: Recall that the area of an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$.]

In Problems 13-16, use Stokes' theorem to evaluate
$\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S$. Assume that the surface S is oriented upward.
13. $\mathbf{F}=6 y z \mathbf{i}+5 x \mathbf{j}+y z e^{x^{2}} \mathbf{k} ; S$ that portion of the paraboloid $z=\frac{1}{4} x^{2}+y^{2}$ for $0 \leq z \leq 4$
14. $\mathbf{F}=y \mathbf{i}+(y-x) \mathbf{j}+z^{2} \mathbf{k} ; S$ that portion of the sphere $x^{2}+y^{2}+(z-4)^{2}=25$ for $z \geq 0$
15. $\mathbf{F}=3 x^{2} \mathbf{i}+8 x^{3} y \mathbf{j}+3 x^{2} y \mathbf{k} ; S$ that portion of the plane $z=x$ that lies inside the rectangular cylinder defined by the planes $x=0, y=0, x=2, y=2$
16. $\mathbf{F}=2 x y^{2} z \mathbf{i}+2 x^{2} y z \mathbf{j}+\left(x^{2} y^{2}-6 x\right) \mathbf{k} ; S$ that portion of the plane $z=y$ that lies inside the cylinder $x^{2}+y^{2}=1$
17. Use Stokes' theorem to evaluate

$$
\oint_{C} z^{2} e^{x^{2}} d x+x y^{2} d y+\tan ^{-1} y d z
$$

where C is the circle $x^{2}+y^{2}=9$, by finding a surface S with C as its boundary and such that the orientation of C is counterclockwise as viewed from above.
18. Consider the surface integral $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S$, where $\mathbf{F}=x y z \mathbf{k}$ and S is that portion of the paraboloid $z=1-x^{2}-y^{2}$ for $z \geq 0$ oriented upward.
(a) Evaluate the surface integral by the method of Section 9.13; that is, do not use Stokes' theorem.
(b) Evaluate the surface integral by finding a simpler surface that is oriented upward and has the same boundary as the paraboloid.
(c) Use Stokes' theorem to verify the result in part (b).

