Exercise 9.13

9.13 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

- 1. Find the surface area of that portion of the plane 2x + 3y + 4z = 12 that is bounded by the coordinate planes in the first octant.
- Find the surface area of that portion of the plane 2x + 3y + 4z = 12 that is above the region in the first quadrant bounded by the graph r = sin 2θ.
- Find the surface area of that portion of the cylinder x² + z² = 16 that is above the region in the first quadrant bounded on the graphs of x = 0, x = 2, y = 0, y = 5.
- Find the surface area of that portion of the paraboloid z = x² + y² that is below the plane z = 2.
- 5. Find the surface area of that portion of the paraboloid $z = 4 x^2 y^2$ that is above the *xy*-plane.
- 6. Find the surface area of those portions of the sphere $x^2 + y^2 + z^2 = 2$ that are within the cone $z^2 = x^2 + y^2$.
- 7. Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 25$ that is above the region in the first quadrant bounded by the graphs of x = 0, y = 0, $4x^2 + y^2 = 25$. [*Hint*: Integrate first with respect to x.]

- 8. Find the surface area of that portion of the graph of $z = x^2 y^2$ that is in the first octant within the cylinder $x^2 + y^2 = 4$.
- **9.** Find the surface area of the portions of the sphere $x^2 + y^2 + z^2 = a^2$ that are within the cylinder $x^2 + y^2 = ay$.
- **10.** Find the surface area of the portions of the cone $z^2 = \frac{1}{4}(x^2 + y^2)$ that are within the cylinder $(x 1)^2 + y^2 = 1$.
- 11. Find the surface area of the portions of the cylinder $y^2 + z^2 = a^2$ that are within the cylinder $x^2 + y^2 = a^2$. [*Hint*: See Figure 9.10.12.]
- 12. Use the result given in Example 1 to prove that the surface area of a sphere of radius *a* is $4\pi a^2$. [*Hint*: Consider a limit as $b \rightarrow a$.]
- 13. Find the surface area of that portion of the sphere $x^2 + y^2 + z^2 = a^2$ that is bounded between $y = c_1$ and $y = c_2$, $0 < c_1 < c_2 < a$. [*Hint*: Use polar coordinates in the *xz*-plane.]
- 14. Show that the area found in Problem 13 is the same as the surface area of the cylinder $x^2 + z^2 = a^2$ between $y = c_1$ and $y = c_2$.

In Problems 15–24, evaluate the surface integral $\iint_S G(x, y, z) dS$.

- **15.** G(x, y, z) = x; *S* the portion of the cylinder $z = 2 x^2$ in the first octant bounded by x = 0, y = 0, y = 4, z = 0
- 16. G(x, y, z) = xy(9 4z); same surface as in Problem 15
- 17. $G(x, y, z) = xz^3$; S the cone $z = \sqrt{x^2 + y^2}$ inside the cylinder $x^2 + y^2 = 1$
- **18.** G(x, y, z) = x + y + z; *S* the cone $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 4
- 19. $G(x, y, z) = (x^2 + y^2)z$; S that portion of the sphere $x^2 + y^2 + z^2 = 36$ in the first octant
- **20.** $G(x, y, z) = z^2$; S that portion of the plane z = x + 1 within the cylinder $y = 1 x^2$, $0 \le y \le 1$
- **21.** G(x, y, z) = xy; S that portion of the paraboloid $2z = 4 x^2 y^2$ within $0 \le x \le 1, 0 \le y \le 1$
- 22. G(x, y, z) = 2z; S that portion of the paraboloid $2z = 1 + x^2 + y^2$ in the first octant bounded by x = 0, $y = \sqrt{3x}$, z = 1
- **23.** $G(x, y, z) = 24\sqrt{yz}$; *S* that portion of the cylinder $y = x^2$ in the first octant bounded by y = 0, y = 4, z = 0, z = 3
- 24. $G(x, y, z) = (1 + 4y^2 + 4z^2)^{1/2}$; S that portion of the paraboloid $x = 4 y^2 z^2$ in the first octant outside the cylinder $y^2 + z^2 = 1$

In Problems 25 and 26, evaluate $\int \int_S (3z^2 + 4yz) dS$, where *S* is that portion of the plane x + 2y + 3z = 6 in the first octant. Use the projection of *S* onto the coordinate plane indicated in the given figure.

FIGURE 9.13.12 Region R for Problem 25

FIGURE 9.13.13 Region R for Problem 26

In Problems 27 and 28, find the mass of the given surface with the indicated density function.

- S that portion of the plane x + y + z = 1 in the first octant; density at a point P directly proportional to the square of the distance from the yz-plane
- **28.** S the hemisphere $z = \sqrt{4 x^2 y^2}; \rho(x, y, z) = |xy|$

In Problems 29–34, let \mathbf{F} be a vector field. Find the flux of \mathbf{F} through the given surface. Assume the surface *S* is oriented upward.

29. $\mathbf{F} = x\mathbf{i} + 2z\mathbf{j} + y\mathbf{k}$; *S* that portion of the cylinder $y^2 + z^2 = 4$ in the first octant bounded by x = 0, x = 3, y = 0, z = 0

- **30.** $\mathbf{F} = z\mathbf{k}$; S that part of the paraboloid $z = 5 x^2 y^2$ inside the cylinder $x^2 + y^2 = 4$
- **31.** $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$; same surface *S* as in Problem 30
- **32.** $\mathbf{F} = -x^3 y \mathbf{i} + y z^3 \mathbf{j} + x y^3 \mathbf{k}$; *S* that portion of the plane z = x + 3 in the first octant within the cylinder $x^2 + y^2 = 2x$
- **33.** $\mathbf{F} = \frac{1}{2}x^2\mathbf{i} + \frac{1}{2}y^2\mathbf{j} + z\mathbf{k}$; *S* that portion of the paraboloid $z = 4 x^2 y^2$ for $0 \le z \le 4$
- **34.** $\mathbf{F} = e^{y}\mathbf{i} + e^{x}\mathbf{j} + 18y\mathbf{k}$; *S* that portion of the plane x + y + z = 6 in the first octant
- **35.** Find the flux of $\mathbf{F} = y^2 \mathbf{i} + x^2 \mathbf{j} + 5z \mathbf{k}$ out of the closed surface *S* given in Figure 9.13.11.
- 36. Find the flux of F = -yi + xj + 6z²k out of the closed surface S bounded by the paraboloids z = 4 x² y² and z = x² + y².
- 37. Let T(x, y, z) = x² + y² + z² represent temperature and let the "flow" of heat be given by the vector field F = -∇T. Find the flux of heat out of the sphere x² + y² + z² = a². [*Hint*: The surface area of a sphere of radius a is 4πa².]
- **38.** Find the flux of $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ out of the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$. See **FIGURE 9.13.14**. Use the fact that the flux out of the cube is the sum of the fluxes out of the sides.

FIGURE 9.13.14 Cube in Problem 38

- **39.** Coulomb's law states that the electric field **E** due to a point charge q at the origin is given by $\mathbf{E} = kq\mathbf{r}/||\mathbf{r}||^3$, where k is a constant and $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Determine the flux out of a sphere $x^2 + y^2 + z^2 = a^2$.
- **40.** If $\sigma(x, y, z)$ is charge density in an electrostatic field, then the total charge on a surface *S* is $Q = \int \int_S \sigma(x, y, z) \, dS$. Find the total charge on that part of the hemisphere $z = \sqrt{16 x^2 y^2}$ that is inside the cylinder $x^2 + y^2 = 9$ if the charge density at a point *P* on the surface is directly proportional to distance from the *xy*-plane.
- 41. The coordinates of the centroid of a surface are given by

$$\overline{x} = \frac{\iint_S x \, dS}{A(S)}, \quad \overline{y} = \frac{\iint_S y \, dS}{A(S)}, \quad \overline{z} = \frac{\iint_S z \, dS}{A(S)},$$

where A(S) is the area of the surface. Find the centroid of that portion of the plane 2x + 3y + z = 6 in the first octant.

- 42. Use the information in Problem 41 to find the centroid of the hemisphere $z = \sqrt{a^2 x^2 y^2}$.
- **43.** Let z = f(x, y) be the equation of a surface *S* and **F** be the vector field $\mathbf{F}(x, y, z) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}$. Show that $\iint_{S} (\mathbf{F} \cdot \mathbf{n}) dS$ equals

$$\iint\limits_{R} \left[-P(x, y, z) \frac{\partial z}{\partial x} - Q(x, y, z) \frac{\partial z}{\partial y} + R(x, y, z) \right] dA.$$