Exercise 9.12

9.12 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1-4, verify Green's theorem by evaluating both integrals.

1. $\oint_{C}(x-y) d x+x y d y=\iint_{R}(y+1) d A$, where C is the triangle with vertices $(0,0),(1,0),(1,3)$
2. $\oint_{C}-2 y^{2} d x+4 x y d y=\iint_{R} 8 y d A$, where C is the boundary of the region in the first quadrant determined by the graphs of $y=0, y=\sqrt{x}, y=-x+2$
In Problems 5-14, use Green's theorem to evaluate the given line integral.
3. $\oint_{C} 2 y d x+5 x d y$, where C is the circle $(x-1)^{2}+(y+3)^{2}=25$
4. $\oint_{C}\left(x+y^{2}\right) d x+\left(2 x^{2}-y\right) d y$, where C is the boundary of the region determined by the graphs of $y=x^{2}, y=4$
5. $\oint_{C}\left(x^{4}-2 y^{3}\right) d x+\left(2 x^{3}-y^{4}\right) d y$, where C is the circle $x^{2}+y^{2}=4$
6. $\oint_{C}(x-3 y) d x+(4 x+y) d y$, where C is the rectangle with vertices $(-2,0),(3,0),(3,2),(-2,2)$
7. $\oint_{C} 2 x y d x+3 x y^{2} d y$, where C is the triangle with vertices $(1,2),(2,2),(2,4)$
8. $\oint_{C} e^{2 x} \sin 2 y d x+e^{2 x} \cos 2 y d y$, where C is the ellipse $9(x-1)^{2}+4(y-3)^{2}=36$
9. $\oint_{C} x y d x+x^{2} d y$, where C is the boundary of the region determined by the graphs of $x=0, x^{2}+y^{2}=1, x \geq 0$
10. $\oint_{C} e^{x^{2}} d x+2 \tan ^{-1} x d y$, where C is the triangle with vertices $(0,0),(0,1),(-1,1)$
11. $\oint_{C} \frac{1}{3} y^{3} d x+\left(x y+x y^{2}\right) d y$, where C is the boundary of the region in the first quadrant determined by the graphs of $y=0$, $x=y^{2}, x=1-y^{2}$
12. $\oint_{C} x y^{2} d x+3 \cos y d y$, where C is the boundary of the region in the first quadrant determined by the graphs of $y=x^{2}$, $y=x^{3}$

In Problems 15 and 16, evaluate the given integral on any piece-wise-smooth simple closed curve C.
15. $\oint_{C} a y d x+b x d y$
16. $\oint_{C} P(x) d x+Q(y) d y$

In Problems 17 and 18 , let R be the region bounded by a piece-wise-smooth simple closed curve C. Prove the given result.
17. $\oint_{C} x d y=-\oint_{C} y d x=$ area of R
18. $\frac{1}{2} \oint_{C}-y d x+x d y=$ area of R

In Problems 19 and 20, use the results of Problems 17 and 18 to find the area of the region bounded by the given closed curve.
19. The hypocycloid $x=a \cos ^{3} t, y=a \sin ^{3} t, a>0,0 \leq t \leq 2 \pi$
20. The ellipse $x=a \cos t, y=b \sin t, a>0, b>0,0 \leq t \leq 2 \pi$
21. (a) Show that

$$
\oint_{C}-y d x+x d y=x_{1} y_{2}-x_{2} y_{1}
$$

where C is the line segment from the point $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$.
(b) Use part (a) and Problem 18 to show that the area A of a polygon with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, labeled counterclockwise, is

$$
\begin{aligned}
A= & \frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)+\frac{1}{2}\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots \\
& +\frac{1}{2}\left(x_{n-1} y_{n}-x_{n} y_{n-1}\right)+\frac{1}{2}\left(x_{n} y_{1}-x_{1} y_{n}\right) .
\end{aligned}
$$

22. Use part (b) of Problem 21 to find the area of the quadrilateral
23. $\oint_{C} 3 x^{2} y d x+\left(x^{2}-5 y\right) d y=\iint_{R}\left(2 x-3 x^{2}\right) d A$, where C is the rectangle with vertices $(-1,0),(1,0),(1,1),(-1,1)$
24. $\oint_{C}-y^{2} d x+x^{2} d y=\iint_{R}(2 x+2 y) d A$, where C is the circle $x=3 \cos t, y=3 \sin t, 0 \leq t \leq 2 \pi$

In Problems 23 and 24 , evaluate the given line integral where $C=C_{1} \cup C_{2}$ is the boundary of the shaded region R.
23. $\oint_{C}\left(4 x^{2}-y^{3}\right) d x+\left(x^{3}+y^{2}\right) d y$

FIGURE 9.12.12 Boundary C for Problem 23
24. $\oint_{C}\left(\cos x^{2}-y\right) d x+\sqrt{y^{2}+1} d y$

FIGURE 9.12.13 Boundary C for Problem 24
In Problems 25 and 26, proceed as in Example 6 to evaluate the given line integral.
25. $\oint_{C} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}$, where C is the ellipse $x^{2}+4 y^{2}=4$
26. $\oint_{C} \frac{-y}{(x+1)^{2}+4 y^{2}} d x+\frac{x+1}{(x+1)^{2}+4 y^{2}} d y$, where C is the circle $x^{2}+y^{2}=16$

In Problems 27 and 28, use Green's theorem to evaluate the given double integral by means of a line integral. [Hint: Find appropriate functions P and Q.]
27. $\iint_{R} x^{2} d A ; R$ is the region bounded by the ellipse $x^{2} / 9+y^{2} / 4=1$
28. $\iint_{R}[1-2(y-1)] d A ; R$ is the region in the first quadrant bounded by the circle $x^{2}+(y-1)^{2}=1$ and $x=0$

In Problems 29 and 30, use Green's theorem to find the work done by the given force \mathbf{F} around the closed curve in FIGURE 9.12.14.
29. $\mathbf{F}=(x-y) \mathbf{i}+(x+y) \mathbf{j}$
30. $\mathbf{F}=-x y^{2} \mathbf{i}+x^{2} y \mathbf{j}$

