Exercise 9.11

9.11 Exercises Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1-4, use a double integral in polar coordinates to find the area of the region bounded by the graphs of the given polar equations.

1.
$$r = 3 + 3 \sin \theta$$

2.
$$r = 2 + \cos \theta$$

3.
$$r = 2 \sin \theta$$
, $r = 1$, common area

4.
$$r = 8 \sin 4\theta$$
, one petal

In Problems 5-10, find the volume of the solid bounded by the graphs of the given equations.

5. One petal of
$$r = 5 \cos 3\theta$$
, $z = 0$, $z = 4$

6.
$$x^2 + y^2 = 4$$
, $z = \sqrt{9 - x^2 - y^2}$, $z = 0$

6.
$$x^2 + y^2 = 4$$
, $z = \sqrt{9 - x^2 - y^2}$, $z = 0$
7. Between $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$, $z = \sqrt{16 - x^2 - y^2}$, $z = 0$

8.
$$z = \sqrt{x^2 + y^2}, x^2 + y^2 = 25, z = 0$$

8.
$$z = \sqrt{x^2 + y^2}, x^2 + y^2 = 25, z = 0$$

9. $r = 1 + \cos \theta, z = y, z = 0$, first octant

10.
$$r = \cos \theta$$
, $z = 2 + x^2 + y^2$, $z = 0$

In Problems 11-16, find the center of mass of the lamina that has the given shape and density.

11.
$$r = 1$$
, $r = 3$, $x = 0$, $y = 0$, first quadrant; $\rho(r, \theta) = k$ (constant)

12.
$$r = \cos \theta$$
; density at point P directly proportional to the distance from the pole

13.
$$y = \sqrt{3}x$$
, $y = 0$, $x = 3$; $\rho(r, \theta) = r^2$

14.
$$r = 4\cos 2\theta$$
, petal on the polar axis; $\rho(r, \theta) = k$ (constant)

15. Outside
$$r = 2$$
 and inside $r = 2 + 2\cos\theta$, $y = 0$, first quadrant; density at a point *P* inversely proportional to the distance from the pole

16.
$$r = 2 + 2 \cos \theta$$
, $y = 0$, first and second quadrants; $\rho(r, \theta) = k$ (constant)

In Problems 17-20, find the indicated moment of inertia of the lamina that has the given shape and density.

17.
$$r = a$$
; $\rho(r, \theta) = k$ (constant); I_x

18.
$$r = a$$
; $\rho(r, \theta) = \frac{1}{1 + r^4}$; I_x

- 19. Outside r=a and inside $r=2a\cos\theta$; density at a point P inversely proportional to the cube of the distance from the pole; $I_{\rm y}$
- **20.** Outside r=1 and inside $r=2 \sin 2\theta$, first quadrant; $\rho(r,\theta)=\sec^2\theta$; I_v

In Problems 21–24, find the polar moment of inertia

$$I_0 = \iint\limits_{\rho} r^2 \rho(r, \theta) dA = I_x + I_y$$

of the lamina that has the given shape and density.

- **21.** $r=a; \ \rho(r,\theta)=k$ (constant) [*Hint*: Use Problem 17 and the fact that $I_x=I_y$.]
- **22.** $r = \theta$, $0 \le \theta \le \pi$, y = 0; density at a point *P* proportional to the distance from the pole
- 23. $r\theta = 1, \frac{1}{3} \le \theta \le 1, r = 1, r = 3, y = 0$; density at a point *P* inversely proportional to the distance from the pole [*Hint*: Integrate first with respect to θ .]
- **24.** $r = 2a \cos \theta$; $\rho(r, \theta) = k$ (constant)

In Problems 25-32, evaluate the given iterated integral by changing to polar coordinates.

25.
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$$

26.
$$\int_0^{\sqrt{2}/2} \int_0^{\sqrt{1-y^2}} \frac{y^2}{\sqrt{x^2+y^2}} \, dx \, dy$$

27.
$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} e^{x^2+y^2} dx \, dy$$

28.
$$\int_{-\sqrt{\pi}}^{\sqrt{\pi}} \int_{0}^{\sqrt{\pi - x^2}} \sin(x^2 + y^2) \, dy \, dx$$

29.
$$\int_0^1 \int_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} \frac{x^2}{x^2 + y^2} \, dy \, dx + \int_1^2 \int_0^{\sqrt{4-x^2}} \frac{x^2}{x^2 + y^2} \, dy \, dx$$

30.
$$\int_{0}^{1} \int_{0}^{\sqrt{2y-y^2}} (1-x^2-y^2) dx dy$$

31.
$$\int_{-5}^{5} \int_{0}^{\sqrt{25-x^2}} (4x + 3y) \, dy \, dx$$

$$32. \int_0^1 \int_0^{\sqrt{1-y^2}} \frac{1}{1+\sqrt{x^2+y^2}} dx \, dy$$

33. The liquid hydrogen tank in the space shuttle has the form of a right circular cylinder with a semi-ellipsoidal cap at each end. The radius of the cylindrical part of the tank is 4.2 m. Find the volume of the tank shown in **FIGURE 9.11.6**.

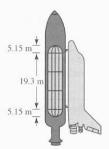


FIGURE 9.11.6 Fuel tank in Problem 33

34. Evaluate $\iint_R (x+y) dA$ over the region shown in **FIGURE 9.11.7**.

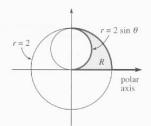


FIGURE 9.11.7 Region R for Problem 34

35. The improper integral $\int_0^\infty e^{-x^2} dx$ is important in the theory of probability, statistics, and other areas of applied mathematics. If *I* denotes the integral, then

$$I = \int_0^\infty e^{-x^2} dx \quad \text{and} \quad I = \int_0^\infty e^{-y^2} dy$$

and consequently

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right) = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy.$$

Use polar coordinates to evaluate the last integral. Find the value of I.