

Afdeling Toegepaste Wiskunde / Division of Applied Mathematics Image compression (8.1.6 to 8.2.7)

**SLIDE 1/8** 

(page 558)

### 8.1.6 Image compression models



- Mapper: Reduces spatial and temporal redundancy, e.g. run-length coding and calculation of DCT (reversible)
- Quantizer: Removes irrelevant information, e.g. reduction of number of grey scales and removal of high frequency content (irreversible)
- Symbol coder: Reduces coding redundancy, e.g. generates fixed- or variable-length code (reversible)

### 8.1.7 Image formats, containers and compression standards (READ)



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics Image compression (8.1.6 to 8.2.7)

**SLIDE 2/8** 

8.2 Some basic compression models

### 8.2.1 Huffman coding

- Most probable symbol is assigned the shortest code word
- Variable-length coding
- Used in, for example: CCITT, JBIG2, JPEG, MPEG-1,2,4, H.261, H.262, H.263, H.264

Linstantaneous do not reference succeeding symbols uniquely decodable symbols can be decoded in only one way block code for each symbol: only one code



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics Image compression (8.1.6 to 8.2.7)

**SLIDE 3/8** 

| Original source       |             | Source reduction |         |         |       |  |
|-----------------------|-------------|------------------|---------|---------|-------|--|
| Symbol                | Probability | 1                | 2       | 3       | 4     |  |
| <i>a</i> <sub>2</sub> | 0.4         | 0.4              | 0.4     | 0.4     | ► 0.6 |  |
| $a_6$                 | 0.3         | 0.3              | 0.3     | 0.3 –   | 0.4   |  |
| $a_1$                 | 0.1         | 0.1 <sub>L</sub> | ► 0.2 T | → 0.3 – |       |  |
| $a_4$                 | 0.1         | 0.1 -            | 0.1     |         |       |  |
| $a_3$                 | 0.06 —      | → 0.1            |         |         |       |  |
| $a_5$                 | 0.04 —      |                  |         |         |       |  |



| 0                     | riginal source | source Source reduction |      |        |      |       |      |      |      |   |
|-----------------------|----------------|-------------------------|------|--------|------|-------|------|------|------|---|
| Symbol                | Probability    | Code                    | 1    | 1      | 2    | 2     |      | 3    | 4    |   |
| $a_2$                 | 0.4            | 1                       | 0.4  | 1      | 0.4  | 1     | 0.4  | 1 _  | -0.6 | 0 |
| a <sub>6</sub>        | 0.3            | 00                      | 0.3  | 00     | 0.3  | 00    | 0.3  | 00 🖛 | 0.4  | 1 |
| $a_1$                 | 0.1            | 011                     | 0.1  | 011    | -0.2 | 010   | -0.3 | 01 🚽 |      |   |
| $a_4$                 | 0.1            | 0100                    | 0.1  | 0100 🖛 | 0.1  | 011 🚽 |      |      |      |   |
| <i>a</i> <sub>3</sub> | 0.06           | 01010                   | -0.1 | 0101 🖛 |      |       |      |      |      |   |
| $a_5$                 | 0.04           | 01011 🚽                 |      |        |      |       |      |      |      |   |
| 2                     |                |                         |      |        |      |       |      |      |      |   |

**FIGURE 8.8** Huffman code assignment procedure.

### Example

**Decode:** 010100111100

### 8.2.2 Golomb coding (READ)



#### SLIDE 4/8

# **8.2.3 Arithmetic coding** • Not a block code • Entire sequence of symbols assigned a single arithmetic code

**Example:** Code  $a_1 a_2 a_3 a_3 a_4$ , where  $a_4$  is EOB indicator



FIGURE 8.12 Arithmetic coding procedure.

| Source Symbol | Probability | Initial Subinterval |
|---------------|-------------|---------------------|
| $a_1$         | 0.2         | [0.0, 0.2)          |
| $a_2$         | 0.2         | [0.2, 0.4]          |
| $a_3$         | 0.4         | [0.4, 0.8)          |
| $a_4$         | 0.2         | [0.8, 1.0)          |

TABLE 8.6

Arithmetic coding example.



### 8.2.4 LZW coding

- Also attack inter-pixel redundancies
- Assigns fixed-length code words to variable length sequences of source symbols
- Requires no a priori knowledge of probability of occurrence of symbols
- Integrated into GIF, TIFF and PDF file formats

## 8.2.5 and 8.2.7: Run-length and bit-plane coding 8.2.6 (READ) Bit-plane coding

- Process the image's bit planes individually
- Decompose the image into a series of binary images
- Compress each binary image via a binary compression method

**One-dimensional run-length coding** 

• Represent each row of the image or bit plane by a sequence of lengths that describes successive runs of black and white pixels



• Standard compression approach in FAX coding (TIFF files):

One-dimensional run-length coding: CCITT Group 3 standard Two-dimensional run-length coding: CCITT Group 4 standard

- $\bullet$  Code each contiguous group of 0 's or 1 's encountered in a left-to-right scan of each row by its length
  - (1) Specify the value of first run of each row
  - (2) Assume that each row begins with a white run, whose run length may be zero
- Additional compression by variable length coding the run lengths themselves
- Black and white run lengths coded seperately tailored to their own statistics

Two-dimensional run-length coding

- Relative address coding (RAC)
- Not discussed

### CCITT Group 3 standard: 1D run-length coding (table A.1, p 933)

| Run<br>Length | White Code<br>Word | Black Code<br>Word | Run<br>Length | White Code<br>Word | Black Code<br>Word |
|---------------|--------------------|--------------------|---------------|--------------------|--------------------|
| 0             | 00110101           | 0000110111         | 32            | 00011011           | 000001101010       |
| 1             | 000111             | 010                | 33            | 00010010           | 000001101011       |
| 2             | 0111               | 11                 | 34            | 00010011           | 000011010010       |
| 3             | 1000               | 10                 | 35            | 00010100           | 000011010011       |
| 4             | 1011               | 011                | 36            | 00010101           | 000011010100       |
| 5             | 1100               | 0011               | 37            | 00010110           | 000011010101       |
| 6             | 1110               | 0010               | 38            | 00010111           | 000011010110       |
| 7             | 1111               | 00011              | 39            | 00101000           | 000011010111       |
| 8             | 10011              | 000101             | 40            | 00101001           | 000001101100       |
| 9             | 10100              | 000100             | 41            | 00101010           | 000001101101       |
| 10            | 00111              | 0000100            | 42            | 00101011           | 000011011010       |
| 11            | 01000              | 0000101            | 43            | 00101100           | 000011011011       |
| 12            | 001000             | 0000111            | 44            | 00101101           | 000001010100       |
| 13            | 000011             | 00000100           | 45            | 00000100           | 000001010101       |
| 14            | 110100             | 00000111           | 46            | 00000101           | 000001010110       |
| 15            | 110101             | 000011000          | 47            | 00001010           | 000001010111       |
| 16            | 101010             | 0000010111         | 48            | 00001011           | 000001100100       |
| 17            | 101011             | 0000011000         | 49            | 01010010           | 000001100101       |
| 18            | 0100111            | 0000001000         | 50            | 01010011           | 000001010010       |
| 19            | 0001100            | 00001100111        | 51            | 01010100           | 000001010011       |
| 20            | 0001000            | 00001101000        | 52            | 01010101           | 000000100100       |
| 21            | 0010111            | 00001101100        | 53            | 00100100           | 000000110111       |
| 22            | 0000011            | 00000110111        | 54            | 00100101           | 000000111000       |
| 23            | 0000100            | 00000101000        | 55            | 01011000           | 000000100111       |
| 24            | 0101000            | 00000010111        | 56            | 01011001           | 000000101000       |
| 25            | 0101011            | 00000011000        | 57            | 01011010           | 000001011000       |
| 26            | 0010011            | 000011001010       | 58            | 01011011           | 000001011001       |
| 27            | 0100100            | 000011001011       | 59            | 01001010           | 000000101011       |
| 28            | 0011000            | 000011001100       | 60            | 01001011           | 000000101100       |
| 29            | 00000010           | 000011001101       | 61            | 00110010           | 000001011010       |
| 30            | 00000011           | 000001101000       | 62            | 00110011           | 000001100110       |
| 31            | 00011010           | 000001101001       | 63            | 00110100           | 000001100111       |

### **CCITT** terminating codes



### CCITT Group 3 standard: 1D run-length coding... (table A.2, p 934)

CCITT makeup codes

| Run<br>Length | White Code<br>Word | Black Code<br>Word | Run<br>Length | White Code<br>Word | Black Code<br>Word |  |
|---------------|--------------------|--------------------|---------------|--------------------|--------------------|--|
| 64            | 11011              | 0000001111         | 960           | 011010100          | 0000001110011      |  |
| 128           | 10010              | 000011001000       | 1024          | 011010101          | 0000001110100      |  |
| 192           | 010111             | 000011001001       | 1088          | 011010110          | 0000001110101      |  |
| 256           | 0110111            | 000001011011       | 1152          | 011010111          | 0000001110110      |  |
| 320           | 00110110           | 000000110011       | 1216          | 011011000          | 0000001110111      |  |
| 384           | 00110111           | 000000110100       | 1280          | 011011001          | 0000001010010      |  |
| 448           | 01100100           | 000000110101       | 1344          | 011011010          | 0000001010011      |  |
| 512           | 01100101           | 0000001101100      | 1408          | 011011011          | 0000001010100      |  |
| 576           | 01101000           | 0000001101101      | 1472          | 010011000          | 0000001010101      |  |
| 640           | 01100111           | 0000001001010      | 1536          | 010011001          | 0000001011010      |  |
| 704           | 011001100          | 0000001001011      | 1600          | 010011010          | 0000001011011      |  |
| 768           | 011001101          | 0000001001100      | 1664          | 011000             | 0000001100100      |  |
| 832           | 011010010          | 0000001001101      | 1728          | 010011011          | 0000001100101      |  |
| 896           | 011010011          | 0000001110010      |               |                    |                    |  |
| Code Word     |                    |                    |               | Cod                | e Word             |  |
| 1792          | 00000              | 001000             | 2240          | 00000              | 0010110            |  |
| 1856          | 0000001100         |                    | 2304          | 00000010111        |                    |  |
| 1920          | 0000001101         |                    | 2368          | 000000011100       |                    |  |
| 1984          | 00000010010        |                    | 2432          | 00000011101        |                    |  |
| 2048          | 00000010011        |                    | 2496          | 00000011110        |                    |  |
| 2112          | 00000010100        |                    | 2560          | 00000011111        |                    |  |
| 2176          | 00000              | 0010101            |               |                    |                    |  |

- If run length < 64: terminating code (Huffman type)
- If run length  $\ge 64$ : makeup code + terminating code
- **EOL-code:** 00000000001
- Note that (generally): white code < black code
- Note that (generally): small run lengths more probable