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CHAPTER 8: Image compression (page 547)

Definition: Reduction of amount of data used to represent an image by
reducing redundant data, so that the image can be stored or transferred
more efficiently

Compression:

{
Lossless coding: Error free compression
Lossy coding: Error containing compression

Motivation: Amount of data required to represent a 2-hour SD TV movie...

30
frames

sec
× (720× 480)

pixels

frame
× 3

bytes

pixel
= 31, 104, 000 bytes/sec

31, 104, 000
bytes

sec
× (60)2

sec

hour
× 2 hours ≈ 2.24× 1011 bytes ≈ 224 GB

Twenty-seven 8.5 GB dual-layer DVDs are required to store this! To store
this on a single DVD, a compression factor of 26.3 is required. Even more
compression is required for HD TV (1920 × 1080 × 3 bytes/image)

Other applications: Web page images, televideo conferencing, remote sens-
ing, document and medical imaging, FAX
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8.1: Fundamentals

• Objective is to get rid of redundant data (data �= information)

• Compression ratio: C =
b

b′
• Relative data redundancy: R = 1−

1

C

b = amount of data in uncompressed data set
b′ = amount of data in compressed data set

}
≈ the same information

If b′ = b, then C = 1 and R = 0
If b : b′ = 10 : 1, then R = 0.9 ⇒ 90% of data redundant

Three types of redundancy:






(1) Coding redundancy
(2) Spatial and temporal redundancy
(3) Irrelevant information

Coding redundancy

Code ≡ system of symbols (letters, numbers) that represent information
(set of events)

Piece of information (event) assigned sequence of code symbols⇒ code word

Number of symbols in a code word is its length
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Usually the 8-bit codes that represent image intensities contain more bits
than required

Spatial and temporal redundancy

Pixels in images are often correlated spatially and information is unneces-
sarily replicated
In video sequences, temporally correlated pixels also duplicate information

Irrelevant information

Images often contain redundant information that is ignored by the human
visual system (psycho-visual redundancy)
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8.1.1 Coding redundancy

Consider the histogram

pr(rk) =
nk
MN

, k = 0, 1, . . . , L− 1

and let

ℓ(rk) ≡
number of bits used to represent
the gray scale value rk,

then

Lave =
L−1∑

k=0

ℓ(rk) p(rk) ≡
average number of bits
required to represent
a pixel in the image

Therefore, for an M ×N image, we have that

MNLave ≡
total number a bits required
to code the entire image

When each grey scale value is represented by an m-bit (natural) binary code,
then Lave = m
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Example 8.1: Variable length coding (reversible)

Natural 8-bit code: Lave = 8 bits
Variable length code: Lave = 0.25(2) + 0.47(1) + 0.25(3) + 0.03(3) = 1.81 bits

C =
8

1.81
≈ 4.42

R = 1−
1

4.42
= 0.774 ⇒ 77.4% of data is redundant

Strategy: When p(rk) is large, ℓ2(rk) should be small, and vice versa

Note: Best fixed-length code is {00, 01, 10, 11} − the resulting compression
is 4 : 1, which is still 10% less than 4.42 : 1 for variable-length code
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8.1.2 Spatial and temporal redundancy

(1) All intensities equally probable

(2) Line intensities random ⇒ pixels independent in vertical direction

(3) Pixels in a specific line are maximally correlated (horizontally)

• Fig 8.1 (b) can not be compressed by variable-length coding alone

• Spatial redundancy can be eliminated by utilising run-length pairs (128 : 1)
or the differences between adjacent pixels (reversible mappings)

• In most images, the pixels are correlated spatially (x and y directions),
and in time (videos)
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8.1.3 Irrelevant information

Fig 8.1 (c): ”Appears” homogeneous ⇒ compression of 65 536 : 1 may be
possible!

Visually redundant data may be removed depending on the application

This removal of data is irreversible and referred to as quantization
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The Discrete Cosine Transform (DCT)

We derived the discrete Fourier transform using the example

f x( )

x0 x1 x2 xN −1 x LN = 2L

∆ x

In general, the periodic continuation of f(x) is discontinuous, which implies
that the Fourier coefficients cn decrease like 1/n

We therefore rather consider the following
x0 x1 xN −1

∆ x

− L / 2 LL / 2
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The periodic continuation of f(x) is now guaranteed to be continuous, which
implies that the Fourier coefficients cn will decrease at least like 1/n2

a0 =
1

L

∫ L/2

−L/2

f (x) dx

=
2

L

∫ L/2

0

f(x) dx

≈
2∆x

L
[f (x0) + f(x1) + . . . + f (xN−1)] (Rectangle rule)

=
2∆x

L

N−1∑

j=0

f(xj)

But
∆x = (L/2)/N = L/(2N) ⇒ (2∆x)/L = 1/N,

therefore

�0 = a0 =
1

N

N−1∑

j=0

fj
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For n = 1, 2, . . . , N − 1, we have that

an =
2

L

∫ L/2

−L/2

f(x) cos

{
2nπx

L

}
dx

=
4

L

∫ L/2

0

f (x) cos

{
2nπx

L

}
dx

≈
4∆x

L

{
f (x0) cos

{
2nπx0
L

}
+ . . . + f(xN−1) cos

{
2nπxN−1

L

}}

=
4∆x

L

N−1∑

j=0

fj cos

{
2nπxj
L

}

But
2∆x

L
=
1

N
⇒

4∆x

L
=
2

N
and xj =

{
2j + 1

2

}
∆x, that is

x0 = (1/2) ∆x

x1 = (3/2) ∆x

x2 = (5/2) ∆x, etc.



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics

Image compression (8.1.1 to 8.1.5) SLIDE 11/15

Therefore

xj =

{
2j + 1

2

}
L

2N
⇒

2xj
L
=
(2j + 1)

2N

and

�n = an =
2

N

N−1∑

j=0

fj cos

{
(2j + 1)nπ

2N

}
, n = 1, 2, . . . , N − 1

To summarize...

�n = α
2
n

N−1∑

j=0

fj cos

{
(2j + 1)nπ

2N

}

where

α2n =






1

N
, n = 0

2

N
, n = 1, 2, . . . , N − 1
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Multiply on both sides with cos

{
(2k + 1)nπ

2N

}
and

N−1∑

n=0

:

N−1∑

n=0

�n cos

{
(2k + 1)nπ

2N

}

=
N−1∑

n=0

α2n

N−1∑

j=0

fj cos

{
(2j + 1)nπ

2N

}
cos

{
(2k + 1)nπ

2N

}

=
N−1∑

j=0

fj

N−1∑

n=0

α2n cos

{
(2j + 1)nπ

2N

}
cos

{
(2k + 1)nπ

2N

}

It can be shown that
N−1∑

n=0

cos

{
(2j + 1)nπ

2N

]
cos

{
(2k + 1)nπ

2N

}
=

{
N+1
2 , j = k

1
2, j �= k

thus N−1∑

n=0

α2
n
cos

{
(2j + 1)nπ

2N

}
cos

{
(2k + 1)nπ

2N

}
=






{
2

N

}{
N + 1

2

}
−
1

N
= 1, j = k

{
2

N

}{
1

2

}
−
1

N
= 0, j �= k
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This implies that
N−1∑

n=0

�n cos

{
(2k + 1)nπ

2N

}
= fk × 1

and

fj =
N−1∑

n=0

�n cos

{
(2j + 1)nπ

2N

}

Now let Cn =
1

αn
�n, then

Cn = DCT{ fj } = αn

N−1∑

j=0

fj cos

{
(2j + 1)nπ

2N

}

fj = DICT{Cn } =
N−1∑

n=0

αn Cn cos

{
(2j + 1)nπ

2N

}

where

αn =






√
1

N
, n = 0

√
2

N
, n = 1, 2, . . . , N − 1
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8.1.4 Measuring image information (READ)

8.1.5 Fidelity criteria Objective fidelity criteria

Root-mean-square error

erms =



 1

MN

M−1∑

x=0

N−1∑

y=0

[ f̂(x, y)− f (x, y) ]2




1/2

Mean-square signal-to-noise ratio

SNRms =

M−1∑

x=0

N−1∑

y=0

f̂ (x, y)2

M−1∑

x=0

N−1∑

y=0

[ f̂(x, y)− f(x, y) ]2
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Subjective fidelity criteria

• Often more appropriate!!!


