

SLIDE 1/16

5.4 Periodic noise reduction by frequency domain filtering

(page 357)

5.4.1 Bandreject Filters

Ideal bandreject filter

$$H(u,v) = \begin{cases} 1, \ D(u,v) < D_0 - \frac{W}{2} \\ 0, \ D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1, \ D(u,v) > D_0 + \frac{W}{2} \end{cases}$$

 \boldsymbol{W} is the width of the band

Butterworth bandreject filter

$$H(u,v) = \frac{1}{1 + \left\{\frac{D(u,v) \; W}{D^2(u,v) - D_0^2}\right\}^{2n}}$$

Gaussian bandreject filter

$$H(u,v) = 1 - e^{-\left\{\frac{D^2(u,v) - D_0^2}{D(u,v) W}\right\}}$$

SLIDE 2/16

a b c

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject filters.

SLIDE 3/16

5.4.2 Bandpass Filters

$$H_{\rm BP}(u,v) = 1 - H_{\rm BR}(u,v)$$

5.4.3 Notch Filters

Ideal notch reject filter

$$H(u,v) = \left\{ \begin{array}{ll} 0, \ D_1(u,v) \leq D_0 \ \text{or} \ D_2(u,v) \leq D_0 \\ 1, \ \text{otherwise} \end{array} \right.$$

$$D_1(u,v) = \left[(u - M/2 - u_0)^2 + (v - N/2 - v_0)^2 \right]^{1/2}$$

$$D_2(u,v) = \left[(u - M/2 + u_0)^2 + (v - N/2 + v_0)^2 \right]^{1/2}$$

SLIDE 4/16

Butterworth notch reject filter

$$H(u,v) = \frac{1}{1 + \left\{\frac{D_0^2}{D_1(u,v) \ D_2(u,v)}\right\}^{2n}}$$

Gaussian notch reject filter

$$H(u,v) = 1 - e^{-\left\{\frac{D_1(u,v) \ D_2(u,v)}{D_0^2}\right\}}$$

SLIDE 5/16

Notch pass filters

 $H_{\rm NP}(u,v) = 1 - H_{\rm NR}(u,v)$

Example 5.8: Removal of periodic noise by notch filtering

SLIDE 6/16

Explanation of Example 5.8:

Each of the columns of the image above left contains a discretization f of the function $f(x) = \sin(20x) \ x \in [0, 2\pi]$. The negative of the image is displayed.

The image in the middle shows the negative of abs(fftshift(fft (f)))
The image above right shows the negative of abs(fftshift(fft2 (f)))

SLIDE 7/16

5.4.4 Optimum Notch Filtering

Starlike components in Fourier spectrum indicate more than one sinusoidal pattern

a b FIGURE 5.20 (a) Image of the Mariner 6. (b) Fourier spectrum showing periodic interference. (Courtesy of NASA.)

Observe G(u, v) and experiment with different notch pass filters $H_{NP}(u, v)$ where $\eta(x, y) = IFT \{ H_{NP}(u, v) G(u, v) \}$

We want to optimize a weighting or modulation function w(x,y) where

$$\hat{f}(x,y) = g(x,y) - w(x,y) \eta(x,y)$$
 (1)

in such a way that local variances of $\hat{f}(x,y)$ is minimized

SLIDE 8/16

Consider a neighbourhood size of (2a + 1) by (2b + 1) about every point Local variance of $\hat{f}(x, y)$ at (x, y):

$$\sigma^{2}(x,y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-a}^{a} \sum_{t=-b}^{b} \left[\hat{f}(x+s,y+t) - \overline{\hat{f}}(x,y) \right]^{2}$$
(2)

$$\overline{\hat{f}}(x,y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-a}^{a} \sum_{t=-b}^{b} \hat{f}(x+s,y+t)$$

Substitute (1) into (2):

$$\sigma^{2}(x,y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-a}^{a} \sum_{t=-b}^{b} \{ [g(x+s,y+t) - w(x+s,y+t) \eta(x+s,y+t)] - [\overline{g}(x,y) - \overline{w(x,y)} \eta(x,y)] \}^{2}$$

Assume that w(x, y) remains constant over the neighbourhood, that is let

$$w(x+s,y+t) = w(x,y),$$

then

$$\overline{w(x,y)\;\eta(x,y)}=w(x,y)\;\overline{\eta}(x,y)$$

SLIDE 9/16

and

and

$$\sigma^{2}(x,y) = \frac{1}{(2a+1)(2b+1)} \sum_{s=-a}^{a} \sum_{t=-b}^{b} \{ [g(x+s,y+t) - w(x,y) \eta(x+s,y+t)] - [\overline{g}(x,y) - w(x,y) \overline{\eta}(x,y)] \}^{2}$$
To minimize $\sigma^{2}(x,y)$, we solve $\frac{\partial \sigma^{2}(x,y)}{\partial w(x,y)} = 0$ for $w(x,y)$.
The result is

$$w(x,y) = \frac{\overline{g(x,y) \eta(x,y)} - \overline{g}(x,y) \overline{\eta}(x,y)}{\overline{\eta^{2}(x,y)} - [\overline{\eta}(x,y)]^{2}}$$

FIGURE 5.21 Fourier spectrum (without shifting) of the image shown in Fig. 5.20(a). (Courtesy of NASA.)

SLIDE 10/16

FIGURE 5.22 (a) Fourier spectrum of N(u, v), and (b) corresponding noise interference pattern $\eta(x, y)$. (Courtesy of NASA.)

FIGURE 5.23 Processed image. (Courtesy of NASA.)

SLIDE 11/16

5.5 Linear, position-invariant degradations

$$\begin{split} g(x,y) \ &= \ (h*f)(x,y) + \eta(x,y) \\ &= \ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha,\beta) \ h(x-\alpha,y-\beta) \ d\alpha \ d\beta + \eta(x,y) \\ &\quad G(u,v) = H(u,v) \ F(u,v) + N(u,v) \end{split}$$

- Image deconvolution
- Deconvolution filters

5.6 Estimating the degradation function

- (1) Observation
- (2) Experimentation
- (3) Mathematical modelling

5.6.1 Estimation by image observation

- Given: only the degraded image
- Choose subimage that contains simple structures with little noise: $g_s(x, y)$

• Estimate original subimage: $\hat{f}_s(x,y)$

$$H_s(u,v) = \frac{G_s(u,v)}{\hat{F}_s(u,v)}$$

• Construct H(u,v) on a larger scale with similar "shape" as $H_s(u,v)$

5.6.2 Estimation by experimentation

- Given: degraded image AND similar acquisition equipment
- Change settings until image resembles degraded image
- Aqcuire image of impulse (dot of light) with same settings

$$H(u,v)=rac{G(u,v)}{A},$$
 with A the strength of impulse

SLIDE 13/16

5.6.3 Estimation by modelling

a b c d

• Atmospheric turbulence

$$H(u,v) = e^{-k(u^2 + v^2)^{5/6}}$$

SLIDE 14/16

• Basic mathematical principles: uniform linear motion

Let T be duration of exposure, then $g(x,y) = \int_{0}^{1} f[x - x_{0}(t), y - y_{0}(t)] dt$ $G(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) e^{-2\pi i (ux+vy)} dx dy$ $= \int_{-\infty}^{\infty} \int_{0}^{\infty} \left(\int_{0}^{T} f[x - x_{0}(t), y - y_{0}(t)] dt \right) e^{-2\pi i (ux + vy)} dx dy$ $= \int_{0}^{1} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f[x - x_{0}(t), y - y_{0}(t)] e^{-2\pi i (ux + vy)} dx dy \right) dt$ $= \int_{0}^{T} F(u, v) e^{-2\pi i [ux_0(t) + vy_0(t)]} dt$ $= F(u,v) \int_{0}^{T} e^{-2\pi i [ux_0(t) + vy_0(t)]} dt$ Define $H(u, v) = \int_{0}^{T} e^{-2\pi i [ux_0(t) + vy_0(t)]} dt$ so that G(u, v) = H(u, v) F(u, v)

If $x_0(t)$ and $y_0(t)$ are known, then H(u,v) is known

Illustration

Let
$$x_0(t) = \frac{at}{T}$$
 and $y_0(t) = 0$

Note that $x_0(T) = a$

$$H(u,v) = \int_0^T e^{-2\pi i u x_0(t)} dt$$
$$= \int_0^T e^{-2\pi i u a t/T} dt$$
$$= \mathbf{i}$$
$$= \frac{T}{\pi u a} \sin(\pi u a) e^{-\pi i u a}$$

verify))
---------	---

Note that
$$H(u, v) = 0$$
 if $u = \frac{n}{a}$, $n \in Z$
When $x_0(t) = \frac{at}{T}$ and $y_0(t) = \frac{bt}{T}$, then
 $H(u, v) = \frac{T}{\pi(ua + vb)} \sin[\pi(ua + vb)] e^{-\pi i(ua + vb)}$

SLIDE 16/16

Example 5.10: Image blurring due to motion

a b

FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eq. (5.6-11) with a = b = 0.1 and T = 1.