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CONVOLUTION

Continuous convolution in one dimension

Definition: The convolution of f (x) and g(x) is

(f⋆g)(x) =

∫ ∞

−∞

f(α)g(x− α) dα,

where α is the integration variable

Example 6: Calculate the convolution of

f (x) =

{
1, if x ∈ [0, 1]
0, otherwise

and g(x) =

{
1
2, if x ∈ [0, 1]
0, otherwise

f x( )
1

1

g x( )

1

1

2
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g(x− α) =

{
1
2, if x− α ∈ [0, 1]
0, otherwise

=

{
1
2
, if α ∈ [x− 1, x]
0, otherwise

Note that for different values of x, f (α) remains constant while g(x − α)
varies

• If x ∈ (−∞, 0],

x − 1 x 1

1
g x( )− α

f ( )α

α

then
(f⋆g)(x) =

∫ ∞

−∞

f(α)g(x− α) dα = 0
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• If x ∈ [0, 1],

x − 1 x 1

1
g x( )− α

f ( )α

α
0

(f⋆g)(x) =

∫ x

0

(
1

2
)(1) dα =

x

2

• If x ∈ [1, 2],

x − 1 x1

1
g x( )− α

f ( )α

α
0

(f⋆g)(x) =

∫ 1

x−1

1

2
(1) dα = 1−

x

2
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• If x ∈ [2,∞),

x − 1 x1

1
g x( )− α

f ( )α

α
0
(f⋆g)(x) = 0

Therefore

(f⋆g)(x) =






x

2
, if x ∈ [0, 1]

1−
x

2
, if x ∈ [1, 2]

0, otherwise

10 2

1

2
( * )( )f g x

Smoother?
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Example 7: Calculate the convolution of

f(x) =






2x, if x ∈ [0, 1]
2(2− x), if x ∈ [1, 2]
0, otherwise

and g(x) =

{
1, if x ∈ [−1, 1]
0, otherwise

10 2

2
f x( )

x
10

x

g x( )1

− 1

Solution: (Verify at home)

(f⋆g)(x) =






0, if x ∈ (−∞,−1]
(x + 1)2, if x ∈ [−1, 0]
−x2 + 2x + 1, if x ∈ [0, 2]
(x− 3)2, if x ∈ [2, 3]
0, if x ∈ [3,∞)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0
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1.2

1.4

1.6

1.8

2

Again smoothing!



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics

Fourier analysis 3 (Alternative to Gonzalez & Woods: 4.1 - 4.6) SLIDE 6/25

Application of convolution: The simple camera

D

D

A B O C

x

f x( )
+

+

−

−

Object

Film

Barrier with  hole

c x( )

θ2

θ1

d
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f(x) ≡ light intensity of the object at x

c(x) ≡ light intensity of the photo (on film) at x

Since we initially assume that we have no lens, the camera is out of focus
and c(x) �= f (x)

tan θ1 =
x− d/2

D
=
BC

2D
⇒ BC = 2x− d

tan θ2 =
x + d/2

D
=
AC

2D
⇒ AC = 2x + d

OA = AC − x = (2x + d)− x = x + d

OB = BC − x = (2x− d)− x = x− d

c(x) = cumulation of f (x) between x− d and x + d

=

∫ x+d

x−d

f(x) dx

=

∫ x+d

x−d

f(s) ds
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Before we define the transfer function, g(x), we first introduce the Dirac
Delta function, δ(x):

δ(x) =

{
∞, if x = 0
0, if x �= 0

This function has the following three important properties:

(1)

∫ ∞

−∞

δ(x) dx = 1

(2)

∫ ∞

−∞

f(x) δ(x− x0) dx = f (x0)

(3) (f⋆δ)(x) = f (x)

Also note that when g(x) = δ(x + T ) + δ(x) + δ(x− T ),

(f⋆g)(x) =

∫ ∞

−∞

f (α) g(x− α) dα

=

∫ ∞

−∞

f (α) δ[(x + T )− α] dα +

∫ ∞

−∞

f (α) δ[x− α] dα

+

∫ ∞

−∞

f(α) δ[(x− T )− α] dα

= f (x + T ) + f(x) + f (x− T )
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Therefore, in order to obtain g(x), we have to take a photo of a light impulse,
that is “a speck of light”

This implies that f (x) = δ(x) and that

(f⋆g)(x) = (δ⋆g)(x) = (g⋆δ)(x) = g(x)

D

D

A O B

δ ( )x

d

θ θ

tan θ =
OA

2D
=
d/2

D
⇒ OA = d tan θ =

OB

2D
=
d/2

D
⇒ OB = d
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Therefore g(x) =

{
1, x ∈ [−d, d]
0, otherwise

and
(f⋆g)(x) =

∫ ∞

−∞

f(α) g(x− α) dα

=

∫ x+d

x−d

f (α) dα

=

∫ x+d

x−d

f (s) ds

= c(x)

which implies that c(x) = (f⋆g)(x)

Therefore, for the photo to be perfect, we have to ensure that g(x) = δ(x).

Note that, the wider g(x) is, the more ‘blurred’ the photo c(x) will become

Now: Can we reconstruct f (x) from c(x) and g(x)?... In theory we can,
using the convolution theorem, that is

FT {(f⋆g)(x)} = F (u) G(u)
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Proof of convolution theorem

FT {(f⋆g)(x)} =

∫ ∞

−∞

{(f⋆g)(x)} e−2πiux dx

=

∫ ∞

−∞

{∫ ∞

−∞

f (α) g(x− α)dα

}
e−2πiux dx

Let x− α = t, then x = t + α and dx = dt. Therefore

FT {(f⋆g)(x)} =

∫ ∞

−∞

f (α)

{∫ ∞

−∞

g(t) e−2πiu(α+t)dt

}
dα

=

∫ ∞

−∞

f (α)

{∫ ∞

−∞

g(t) e−2πiut dt

}
e−2πiuαdα

=

∫ ∞

−∞

f (α) G(u) e−2πiuα dα

= G(u)

∫ ∞

−∞

f(α) e−2πiuα dα

= F (u) G(u)

−→

Prove the following at home: (f⋆g)(x) = (g⋆f)(x); FT {f × g} = (F⋆G)(u)
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Since
c(x) = (f⋆g)(x),

the convolution theorem implies that

C(u) = F (u) G(u)

Therefore

f(x) = IFT

{
C(u)

G(u)

}
≡ the recovered original image

This process is called “deconvolution” or “deblurring”. A method similar to
the discrete two-dimensional equivalent of this method was used to partially
recover photos that were taken by the “Hubble” telescope during the period
that the telescope had a faulty lens.

Why is it not possible to fully recover the original function f(x)?
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Note that we can also explain the blurring of f (x) in Fourier space:

C(u) = F (u) G(u)

The function G(u) is a so-called “lowpass filter” which retains the coeffi-
cients of the low frequency modes in F (u), but attenuates the coefficients of
the high frequency modes. This results in the smoothing (in this particular
case, blurring) of f(x) in the physical space

Discrete convolution in one dimension

Definition: Consider two vectors, f (x) and g(x), where

f (x) = [ f (0), f(1), f(2), . . . , f (N − 1) ]

g(x) = [ g(0), g(1), g(2), . . . , g(N − 1) ]

with f (x +N) = f (x) ∀ x, and g(x +N) = g(x) ∀ x, then

(f⋆g)(x) =
1

N

N−1∑

n=0

f (n) g(x− n)
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We assume that f (x) and g(x) have the same dimension, N

Note that (f⋆g)(x +N) = (f⋆g)(x) ∀ x (verify)

Prove the three convolution theorems for the discrete case!

Smoothing convolution masks

Consider a mask

g = [ g(−1), g(0), g(1) ] ,

where
∑
g = 1

(this condition guarantees a lowpass filter in Fourier space ... later)

Therefore
c(x) = g(−1)f(x− 1) + g(0)f (x) + g(1)f (x + 1)

Example 8

If g = [ 14,
1
2,

1
4 ], then c(x) =

1
4(f(x− 1) + 2f(x) + f (x + 1))
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Let c(x) = (G⋆f)(x) and then find G (N dimensional)

c(x) = (G⋆f )(x)

=
1

N

N−1∑

n=0

G(n)f (x− n)

=
1

N
{G(0)f (x) +G(1)f(x− 1) +G(2)f(x− 2)+

. . . +G(N − 1)f (x−N + 1)}

=
1

N
{G(0)f (x) +G(1)f(x− 1) +G(2)f(x− 2)+

. . . +G(N − 1)f (x + 1)}

= g(−1)f (x− 1) + g(0)f (x) + g(1)f(x + 1)

This implies that G(0) = Ng(0)

G(1) = Ng(−1)

G(2) = G(3) = . . . = G(N − 2) = 0

G(N − 1) = Ng(1)

Therefore
G = N [ g(0), g(−1), 0, . . . , 0, g(1) ]



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics

Fourier analysis 3 (Alternative to Gonzalez & Woods: 4.1 - 4.6) SLIDE 16/25

Let FT {G(x)} = Ĝ(u), then

Ĝ(u) =
1

N

N−1∑

x=0

G(x)e−2πiux/N

=
1

N

{
G(0) +G(1)e−2πiu/N + 0 + . . . + 0 +G(N − 1)e−2πiu(N−1)/N

}

=
1

N

{
Ng(0) +Ng(−1)e−2πiu/N + 0 + . . . + 0 +Ng(1)e2πiu/N

}

= g(0) + g(−1)e−2πiu/N + g(1)e2πiu/N

Example 8 (continued...)

Ĝ(u) =
1

4

{
2 + e2πiu/N + e−2πiu/N

}

=
1

4
{2 + 2 cos(2πu/N)}

=
1

2
{1 + cos(2πu/N)}

= cos2(πu/N)

Note that Ĝ(0) = 1 ... this is the reason for the condition,
∑
g = 1

Also note that Ĝ(N/2) = Ĝ(−N/2) = 0
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Example 8: Fourier spectrum

N/2 -N/2 N-N
0

1

0 

This is a LOWPASS FILTER!

Example 9

When g = [ 13,
1
3,

1
3 ], we can show that

Ĝ(0) = 1 and
∣∣∣ Ĝ(N/2)

∣∣∣ =
∣∣∣ Ĝ(−N/2)

∣∣∣ =
1

3
,

(verify)
which also implies a LOWPASS FILTER
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Sharpening convolution masks

Consider a mask g = [ g(−1), g(0), g(1) ] , where
∑
g = 0

(this condition guarantees a highpass filter in Fourier space ... later)

Example 10: When g = [−14,
1
2, −14 ] , we can show that

Ĝ(u) = sin2(πu/N), Ĝ(0) = 0 and
∣∣∣ Ĝ(N/2)

∣∣∣ =
∣∣∣ Ĝ(−N/2)

∣∣∣ = 1
(verify)

Example 10: Fourier spectrum

-N/2 -N N/2 N 0 
0 

1 

This implies a HIGHPASS FILTER
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Continuous convolution in two dimensions

Definition: Consider two functions, f (x, y) and g(x, y), then

(f⋆g)(x, y) =

∫ ∞

−∞

∫ ∞

−∞

f (α, β) g(x− α, y − β) dα dβ

Convolution theorem in two dimensions

(f⋆g)(x, y)⇔ F (u, v) G(u, v)
(verify)

Discrete convolution in two dimensions

Definition: Consider two matrices, f (x, y) and g(x, y), each with M rows and
N columns, then

(f⋆g)(x, y) =
1

MN

M−1∑

m=0

N−1∑

n=0

f (m,n) g(x−m, y − n)

We can now again consider two-dimensional convolution masks, where the
response is as follows for the linear case,

R = w1z1 + w2z2 + . . . + w9z9
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Example of a smoothing mask, that is a lowpass filter in frequency space

∑

i

wi = 1 :

1
9×

1 1 1
1 1 1
1 1 1

Example of a sharpening mask, that is a highpass filter in frequency space

∑

i

wi = 0 :

1
9×

-1 -1 -1
-1 8 -1
-1 -1 -1

Note that when the dimensions of an image is greater than 32 × 32, we
prefer to apply a filter in Fourier space, rather than use a convolution mask
in physical space, since the FFT-algorithm guarantees that this is the more
efficient option.
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CORRELATION

Continuous correlation in one dimension

Definition: The correlation of f(x) and g(x) is

(f⋆• g)(x) =

∫ ∞

−∞

f∗(α) g(x + α) dα

The one function shifts with respect to the other, and is not flipped first in
a left-right direction, as is the case for convolution

Correlation theorems in two dimensions

(f⋆• g)(x, y)⇔ F ∗(u, v) G(u, v)
(verify)

(f⋆• f)(x, y)⇔ |F (u, v) |2 (verify)

Discrete correlation in two dimensions

Definition: Consider two matrices, f (x, y) and g(x, y), then

(f⋆• g)(x, y) =
1

MN

M−1∑

m=0

N−1∑

n=0

f∗(m,n) g(x +m, y + n)
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Application of correlation: Template/prototype matching (G&W: p 891-894)

Simplest form of correlation between f(x, y) and w(x, y)

c(x, y) =
∑

s

∑

t

w(s, t) f(x + s, y + t)

For amplitude normalization: correlation coefficient

γ(x, y) =

∑

s

∑

t

[w(s, t)− w]
∑

s

∑

t

[
f(x + s, y + t)− f (x + s, y + t)

]

{
∑

s

∑

t

[w(s, t)− w]2
∑

s

∑

t

[
f(x + s, y + t)− f(x + s, y + t)

]2
}1

2



Afdeling Toegepaste Wiskunde / Division of Applied Mathematics

Fourier analysis 3 (Alternative to Gonzalez & Woods: 4.1 - 4.6) SLIDE 23/25

It can be shown that γ(x, y) ∈ [−1, 1].

Scale and rotation normalization can be difficult though. Why?

Remember that this can be achieved in Fourier space as well.

Example 12.2: (G&W: Ver 2) Object matching via the correlation coefficient
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Example 4.11: (G&W: Ver 2) Image correlation
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Example 12.2: (G&W: Ver 3) (page 893) Matching by correlation


