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CHECK BOX 1.3

(a)

What would the final specific solution
of the PDE be, if boundary condition
[1] in Example 1.2 is replaced by

u(x, 0) = 10 sin(3πx/L) ?

The solution is shown in Figure 1.4.

Figure 1.4: The specific solution of Example 2.1
if u(x, 0) = 10 sin(3πx/L). Here σ = 0.5 and L = 3.

(b)

What do you expect the solution to be
if boundary condition [1] in Example
1.2 is replaced by

u(x, 0) = 25 sin(πx/L)+10 sin(3πx/L) ?

The solution is shown in Figure 1.5.

Figure 1.5: The specific solution of Example 2.1
if u(x, 0) = 25 sin(πx/L) + 10 sin(3πx/L). Here
σ = 0.5 and L = 3.

1.5 Foreword on Fourier analysis

In Example 1.2, after boundary conditions [2] and [3] have been imposed, (1.14) followed.
Imposing boundary condition [1] on this solution was very straightforward, since the initial
condition that was specified matched the form of (1.14), evaluated at t = 0, perfectly, as
can be seen from (1.15). This will rarely be the case, since any arbitrary function f(x)
can be specified as a boundary condition. We therefore need a method to approximate an
arbitrary function with functions that can easily be imposed as boundary conditions (such as
e.g. sin(πx/L) in Example 2.1).

A series of sine and cosine functions often forms part of a general solution of a PDE. Fourier
analysis is concerned with the decomposition of periodic functions into sine and cosine



1.6 Properties of functions 13

Table 1.1: Three types of Fourier transformations.

Fourier Series (FS)
transforms between a periodic function and an

infinite discrete series of coefficients

Fourier Transform (FT), also called the

Continuous Fourier Transform (CFT)

transforms between two continuous functions

defined on (−∞,∞)

Discrete Fourier Transform (DFT) transforms between two discrete periodic series

components. When an arbitrary function is supplied as a boundary for a boundary value
problem, one has to determine how this function can be represented as an infinite series of
sine and/or cosine terms. Fourier analysis provides the basis for performing this task.

Fourier analysis has various generalisations, and it may be said that in general Fourier analysis
is a method to transform from the physical space to the frequency space and back. There are
three types of Fourier transformations available. They are listed in Table 1.1. In these notes
only the Fourier series (Chapter 2) and the Fourier transform (Chapter 3) will be discussed,
as only these are used in these notes in the solution of boundary value problems.

1.6 Properties of functions

Before we can continue to Fourier analysis we need to review some important properties of
functions that will be utilised in the subsequent chapters.

1.6.1 Parity

“Parity has to do with ‘oddness’ or ‘evenness’ of a function. Knowing the parity of a function
and using its properties, helps to reduce work when the Fourier coefficients are calculated.”

A function whose graph is a mirror image about the y-axis is an even function. A function
whose graph consists of an upside-down image on the other side of the y-axis, is an odd
function. Figures 1.6(a) and (b) are illustrations of an even and an odd function, respectively.

e(x)

x

(a) An even function.

o(x)

x

(b) An odd function.

Figure 1.6: An illustration of functions with parity.
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Definition:

A function e(x) is even if e(−x) = e(x) for all real x.

A function o(x) is odd if o(−x) = −o(x) for all real x.

Examples of even functions are x2, x4, e−x
2
, and cosx. Examples of odd functions are x, x3,

1/x, and sinx. A properly defined odd function o(x) must have the property that o(0) = 0.

Reference to whether a function is even or odd, is collectively called the parity of the function.
It is said that a function that is neither even nor odd has “no parity”.

The term “parity” is also applied to integers. For example, if a set of functions {φ0, φ1, ...} is
given and φ0, φ2, φ4, ... are even, while φ1, φ3, ... are odd, it is said that “the functions and
their indices have the same parity”.

Parity decomposition

Any function f(x) may be decomposed into an even part and an odd part. If

f(x) = e(x) + o(x),

then the even component is
e(x) = 1

2 [f(x) + f(−x)] ,

and the odd component is
o(x) = 1

2 [f(x)− f(−x)] .

Products

Products of functions with parity are as follows:

- even × even = even

- even × odd = odd

- odd × odd = even

CHECK BOX 1.4

Confirm that if e(−x) = e(x) and o(−x) = −o(x), then their product, f(x) = e(x)o(x), also
has the property that f(−x) = −f(x), i.e. f(x) is an odd function.

Do the same for the other cases.

Derivatives

All the even derivatives of a function have the same parity as the function, while the odd
derivatives have opposite parity to the function.
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We will illustrate this by considering the first derivative of an even function, e(−x):

e′(−x) = lim
∆x→0

e(−x+ ∆x)− e(−x)

∆x

= lim
∆x→0

e(x−∆x)− e(x)

∆x

= − lim
∆x→0

e(x)− e(x−∆x)

∆x

= − lim
∆x→0

e(x+ ∆x)− e(x)

∆x

= −e′(x) .

The first derivative of an even function is therefore an odd function.

CHECK BOX 1.5

Confirm that

(a) the first derivative of an odd function is an even function
(b) the second derivative of an even function is also an even function.

Integrals over a symmetric interval

Integrals over [−K,K] simplify when the integrand has parity. Let e(x) be even and o(x) be
odd, then ∫ K

−K
e(x) dx = 2

∫ K

0
e(x) dx ,

and ∫ K

−K
o(x) dx = 0 .

1.6.2 Periodicity

“Since Fourier analysis has to do with periodic functions, we shall give the definition of a
periodic function and list some properties thereof.”

Periodic functions such as sinx and cosx are well known. These functions repeat the same
pattern on consecutive intervals with width 2π. The interval width for repetition is called the
period.

Definition:

A function p(x) is periodic with period K if

p(x+K) = p(x) for all real x.
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Table 1.2: Examples of well known periodic functions.

Square wave function

pcont.(x) =


−1, x ∈ (2k − 1, 2k)

0, x = 2k

1, x ∈ (2k, 2k + 1)

0, x = 2k + 1

for k ∈ Z

Roof-top function

pcont.(x) =

 −x+ 2k, x ∈ (2k − 1, 2k)

x− 2k, x ∈ [2k, 2k + 1]

for k ∈ Z

Saw-tooth function

pcont.(x) =

 x− 2k, x ∈ (2k − 1, 2k + 1)

0, x = 2k + 1

for k ∈ Z

The terminology “p(x) is K-periodic” is often also employed. Note that if a function is K-
periodic, then it is automatically also 2K-periodic, 3K-periodic, etc. The period is, however,
defined as the smallest interval width over which the function is periodic.

If the periodic function is known over one period, then it is known for all real x, and therefore
a periodic function is often given by simply supplying its value over only one period or window.
For example, the square wave (see Table 1.2) may be given as

p(x) =


−1, x ∈ (−1, 0),

0, x = 0,

1, x ∈ (0, 1),

0, x = 1.

The periodic function for the square wave is called the periodic continuation of p(x), and we
shall denote it by pcont.(x). Three examples of periodic functions that occur often, are listed
in Table 1.2. We denote the set of integers by Z, i.e.

Z = {...,−2,−1, 0, 1, 2, ...} .

The periodic continuations and window periods of these periodic functions are also illustrated.
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1.6.3 Function norms and the inner product

“As will be shown in Paragraph 2.3, the Fourier approximation formulae are derived from the
fact that the sine and cosine functions in the series form a complete orthogonal set.

In order to understand the orthogonality concept, the idea of the ‘magnitude of a function’
(the function norm) and ‘how close two functions are to each other’ (the inner product), must
first be introduced.”

It may be helpful to utilise the analogy between vector norms and function norms, and likewise
the analogy between vector dot products and function inner products, in order to see where
the definitions of function norms and function inner products come from. In a more general
setting, these concepts are actually considered entirely equivalent.

Let us recall the idea of vector dot products and vector norms.

Let a,b ∈ Cn, then the dot product of a and b is

aTb =
n∑
j=1

ajbj ,

and the (Euclidean) norm of a is

‖a‖ =
√

aTa =

√√√√ n∑
j=1

ajaj ,

where the overbar denotes the complex conjugate.

For functions f(x) and g(x) : [a, b] → C (i.e. the function values may be complex but x is
real on [a, b]), we define:

Definition: The inner product of f(x) and g(x) on [a, b] is

〈f, g〉 =

∫ b

a
f(x)g(x) dx (1.17)

and

Definition: The norm of f(x) on the interval [a, b] is

‖f(x)‖ =
√
〈f, f〉 =

√∫ b

a
f(x)f(x) dx (1.18)

where, again, the overbar denotes the complex conjugate.

Note how summation in the vector sense is replaced by integration in the function sense.

A function is normalised when it is scaled such that its norm is one.
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EXAMPLE 1.4

Normalise f(x) = x2 on the interval [−1, 1].

f(x)normalised =
f(x)

‖f(x)‖

=
x2√∫ 1
−1 x

4dx

=

√
5

2
x2

The physical interpretation of the dot and inner products may be useful: Two normalised
vectors point in approximately the same direction when their dot product is close to one.
Likewise, two normalised functions are “close to each other” when their inner product is close
to one.

When the dot product of two vectors is zero, they make a 90◦ angle with respect to each other,
and the projection of one vector on the other is zero. One could say that when the dot product
of two vectors is zero, then the one vector “contains nothing” of the other vector. Similarly,
two functions “contain nothing of each other” if their inner product is zero. An example is
〈sin(x), x2〉 = 0 on any symmetric interval. The Taylor series of sinx, i.e. x− x3

3! + x5

5! − ...,
illustrates this – there is no x2 in the series.

1.6.3.1 Orthogonal functions

Two functions are orthogonal over a given interval if their inner product over that interval is
zero.

Definition: f(x) and g(x) is orthogonal on [a, b] if∫ b

a
f(x)g(x) dx = 0 . (1.19)

CHECK BOX 1.6

(a) Show that f(x) = x− 3
4 and g(x) = x2 are orthogonal on [0, 1].

(b) Show that f(x) = sinx and g(x) = cosx are orthogonal on [−π, π].
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1.6.3.2 Orthonormal functions

A set of orthonormal vectors form a convenient basis for a vector space and it simplifies the
obtaining of coefficients for the vector representation in this basis. Likewise a set of orthonormal
functions on [a, b], will simplify the finding of coefficients of a function representation in the
basis spanned by the set of functions.

Definition: The set of functions {φj(x), j = 0, 1, ..., N} are orthonormal on [a, b] if∫ b

a
φj(x)φk(x) dx =

 0, when j 6= k,

1, when j = k.
(1.20)

CHECK BOX 1.7

Show that the following set of functions is an orthonormal set on the interval [−1, 2]:

φ0(x) =
1√
3

; φ1(x) =
1

3
(2x− 1) ; φ2(x) =

√
20

27

(
x2 − x− 1

2

)
.

1.7 Approximations in general

“Approximating one function by another does not necessarily need the concept of orthogonality.
In this section we shall discuss approximation techniques in general without referring to
orthogonality.”

We first consider the general problem of approximating a given function f(x) on a given interval
[a, b] by another function p(x) that contains a number of parameters. These parameters must
be chosen in such a way that the approximation is “as good as possible” in some sense.

Suppose p(x) is a linear combination of a set of basis functions, while f(x) may or may not
lie in the function space spanned by these basis functions. We shall now discuss the so called
least squares approximation idea.

1.7.1 The least squares approximation

The least squares approximation finds p(x) such that the function norm of the difference
between f(x) and p(x) over the given interval is as small as possible.

Let

E = ‖f(x)− p(x)‖2 =

∫ b

a
[f(x)− p(x)]2 dx .

E is then minimised with respect to every parameter in p(x).
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EXAMPLE 1.5

Approximate f(x) = ex by the parabola

p(x) = ax2 + bx+ c ,

on the interval [0, 1].

Let

E =

∫ 1

0
[f(x)− p(x)]2 dx .

E is a minimum with respect to a, b and c if

∂E

∂c
= 0,

∂E

∂b
= 0,

∂E

∂a
= 0.

This leads to the following set of equations in a, b and c:

a
∫ 1

0 x
2dx + b

∫ 1
0 xdx + c

∫ 1
0 1dx =

∫ 1
0 e

xdx,

a
∫ 1

0 x
3dx + b

∫ 1
0 x

2dx + c
∫ 1

0 xdx =
∫ 1

0 xe
xdx,

a
∫ 1

0 x
4dx + b

∫ 1
0 x

3dx + c
∫ 1

0 x
2dx =

∫ 1
0 x

2exdx,

or 
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5



c

b

a

 =


e− 1

1

e− 2

 (1.21)

with solution a = 0.8392, b = 0.8511 and c = 1.0130.

Figure 1.7 shows both f(x) = ex and p(x) = ax2 + bx + c on the same axes. Note how
well p(x) approximates f(x), on the interval [0, 1] and how the approximation quickly
deteriorates outside the interval.

−1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

f(x)

p(x)

Figure 1.7: The function, f(x), and its approximation, p(x).
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1.7.2 The least squares approximation with orthogonal functions

“In Example 1.5 (1.21), the matrix on the left was full and the full system of three equations
in three unknowns had to be solved. Is there a way to simplify the system, for example, can
the matrix be made diagonal?

The answer is, yes: If p(x) is expressed as a combination of orthogonal functions, then the
matrix is diagonal, and the system is easy to solve.”

Although orthogonality is defined for complex functions, we shall simplify the ideas in this
section by considering only real functions.

Let {φ0(x), φ1(x), ..., φN (x)} be an orthogonal set of functions on the interval [a, b]:

∫ b

a
φj(x)φk(x) dx =

 0 when j 6= k ,

‖φk‖2 when j = k .
(1.22)

Let the approximating function be,

p(x) =

N∑
j=0

cjφj(x) ,

and let
E =

∫ b

a
[f(x)− p(x)]2 dx .

We shall now minimise E with respect to every ck, k = 0, 1, ..., N :

∂E

∂ck
=

∂

∂ck

∫ b

a

[
f(x)− c0φ0(x)− c1φ1(x)− ...− ckφk(x)− ...− cNφN (x)

]2
dx

= 2

∫ b

a

[
f(x)− c0φ0(x)− c1φ1(x)− ...− cNφN (x)

]
×
(
− φk(x)

)
dx

= −2

∫ b

a
f(x)φk(x) dx+ 2c0

∫ b

a
φ0(x)φk(x) dx+ ...+ 2ck

∫ b

a
φk(x)φk(x) dx+ ...

= −2

∫ b

a
f(x)φk(x) dx+ 0 + 0 + ...+ 2ck‖φk‖2 + ...

= 0 ,

therefore

ck =
1

‖φk‖2
∫ b

a
f(x)φk(x) dx. (1.23)

This expression was derived by minimising by means of derivatives. A different approach
follows from the “geometrical” observation that ‖f(x) − p(x)‖ is a minimum if the inner
product of f(x)− p(x) with every φj(x) is zero. This approach gives the same result as (1.23).
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EXAMPLE 1.6

Consider the following orthogonal functions on [−1, 1]:

φ0(x) = 1 , where ‖φ0‖2 = 2 ,

φ1(x) = x , where ‖φ1‖2 = 2/3 ,

φ2(x) = x2 − 1
3 , where ‖φ2‖2 = 8/45 .

Find the least squares approximation of the form

p(x) = c0φ0(x) + c1φ1(x) + c2φ2(x)

for f(x) = ex on the interval [−1, 1].

From (1.23) it follows that

c0 =
1

‖φ0‖2
∫ 1

−1
f(x)φ0(x) dx =

1

2

∫ 1

−1
ex dx =

e− e−1

2
= 1.1752

c1 =
1

‖φ1‖2
∫ 1

−1
f(x)φ1(x) dx =

3

2

∫ 1

−1
xex dx = 3e−1 = 1.1036

c2 =
1

‖φ2‖2
∫ 1

−1
f(x)φ2(x) dx =

45

8

∫ 1

−1

(
x2 − 1

3

)
ex dx =

15e− 105e−1

4
= 0.5367

The least squares approximation is

p(x) = 1.1752 + 1.1036x+ 0.5367

(
x2 − 1

3

)
= 0.5367x2 + 1.1036x+ 0.9963 .

Figure 1.8 shows graphs of f(x) = ex as well as p(x) on the same axes. The parabola
approximates the function well on the interval, but the approximation deteriorates outside
the interval.
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Figure 1.8: The function, f(x), and its approximation, p(x).
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CHECK BOX 1.8

Check that the following set of functions are
orthogonal on the interval [−π, π]:

φ0(x) = 1 , φ1(x) = cos(x) , φ2(x) = cos(2x) .

Using this set of functions:

(a) Find the least squares approximation of
f(x) = x2 on [−π, π].

Answer: c0 = π2/3, c1 = −4, c2 = 1.

Figure 1.9 shows graphs of p(x) and f(x)
on the same axes.

(b) Take the same set of orthogonal func-
tions and find the least squares solution
of f(x) = sin2 x on [−π, π]. Draw graphs
of the function and its approximation. Can
you explain the result?

−4 −3 −2 −1 0 1 2 3 4
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f(x)

p(x)

Figure 1.9: The function, f(x), and its
approximation, p(x).
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PROBLEM SET 1: Introduction

1. Solve

kut = σuxx on x ∈ [0, 1], t ∈ [0,∞) ,

where

(a) k = 1 and σ = 4, with

u(x, 0) = sin(3πx) + x , u(0, t) = 0 , and u(1, t) = 1 .

(b) k = 1 and σ = 0.16, with

u(x, 0) = sin(3πx) + 1
4x , u(0, t) = 0 , and u(1, t) = 1

4 .

(c) k = 1 and σ = 0.09, with

u(x, 0) = 2 sin(5πx) + 1
2x , u(0, t) = 0 , and u(1, t) = 1

2 .

(d) k = 5 and σ = 1, with

u(x, 0) = 60 cos(3.5πx) , ux(0, t) = 0 , and u(1, t) = 0 .

(e) k = 1 and σ = 4, with

u(x, 0) = 20 cos(2.5πx) , ux(0, t) = 0 , and u(1, t) = 0 .

Assume (without derivation) that the general solution is of the form

u(x, t) = e−
σλ2t
k [A cos(λx) +B sin(λx)] + Cx+D .

Plot the solutions.

2. Assume that A, B, L, α, β, σ, and γ are all positive constants.

For each of the following three problems, find the expression for the steady-state of u,
that is, the eventual shape that u(x, t) will assume when t→∞. No initial condition is
given here, since it has no effect on the steady state solution. Also plot these steady-state
solutions (they are 2D graphs).
Hint: The “steady-state” simply means that nothing is changing anymore, i.e. ut = 0.

(a)

ut = σuxx + β on x ∈ [0, 1], t ∈ [0,∞) ,

with
u(0, t) = 0 , and u(1, t) = A .

(b)

ut = σuxx + γu on x ∈ [0, L], t ∈ [0,∞) ,



PROBLEM SET 1: Introduction 25

with
ux(0, t) = 0 , and u(L, t) = B .

(c)

ut = σuxx + αu on x ∈ [0, L], t ∈ [0,∞) ,

with
ux(0, t) = A , and u(L, t) = 0 .

3. (a) If pm(x) and pn(x) are complex functions, then orthogonality requires that∫ L

−L
pm(x)pn(x)dx = 0

where the overbar denotes the complex conjugate of the function. Show that the
following set of functions

eikπx/L

is orthogonal on [−L,L] for k ∈ Z.

(b) Derive the formula for solving coefficients, ck, if a function f(x) is expanded as

f(x) =

∞∑
k=−∞

cke
iπkx/L . (1)

Do it as follows: Multiply (1) on both sides by e−iπnx/L and then integrate with
respect to x over [−L,L]. Use the result from 3(a) and simplify.
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Chapter 2

The Fourier series

2.1 Introduction

“This section shows how a Fourier series is obtained, without derivation of the formulae. It
also illustrates how a truncated Fourier series approximates the function from which it was
calculated. The derivation of the formulae for the Fourier coefficients will be done in Paragraph
2.3.”

A Fourier series is an infinite series of sine and cosine functions that approximates a given
function f(x) over the interval [−L,L]. A truncated Fourier series is a finite series consisting
of the first N terms of the infinite Fourier series. Such a truncated series is often called a
Fourier approximation. Denote the truncated Fourier series of f(x) with N terms, by fN (x)
and the infinite Fourier series by f∞(x).

We now state without derivation that

fN (x) =
a0

2
+

N∑
k=1

ak cos(kπx/L) +
N∑
k=1

bk sin(kπx/L) , (2.1)

where

a0 =
1

L

∫ L

−L
f(x) dx

ak =
1

L

∫ L

−L
f(x) cos(kπx/L) dx k = 1, 2, ..., N

bk =
1

L

∫ L

−L
f(x) sin(kπx/L) dx k = 1, 2, ..., N

(2.2)

The constants ak, k = 0, 1, ... and bk, k = 1, 2, ..., are called the Fourier coefficients.

The basis functions used in the expansion are sin(kπx/L) and cos(kπx/L). In this case the
basis functions form an orthogonal set as was discussed in Paragraph 1.7.2.
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The index k is often called the frequency, because for larger k, more oscillations per interval
are witnessed in the relevant basis function. The factor (kπ/L) corresponds to the physical
concept of angular frequency of an oscillation.

The value of each coefficient is an indication of “how much” of the basis function associated
with it, is “present” in the function f(x). For example, if f(x) is an even function, then only
even basis functions (i.e. the cosines) will be present in the function and all the bk’s will be
zero. If f(x) displays wild oscillations then those Fourier coefficients with larger k will be
relatively greater than for a function that does not show oscillations.

EXAMPLE 2.1

Find the Fourier series of

f(x) =

 −1, x ∈ (−π, 0),

1, x ∈ (0, π).

Since f(x) is odd, ak = 0, for all k = 0, 1, ... The bk coefficients are obtained as follows:

bk =
1

π

∫ π

−π
f(x) sin(kx) dx .

This Fourier coefficient may be calculated:

bk =
1

π

∫ π

−π
f(x) sin(kx) dx =

1

π

∫ 0

−π
− sin(kx) dx+

1

π

∫ π

0
sin(kx) dx

=
1

kπ

[
cos(kx)

]0

−π
+

1

kπ

[
− cos(kx)

]π
0

=
1

kπ

[
1− (−1)k

]
+

1

kπ

[
− (−1)k − (−1)

]

=


4

kπ
for k odd,

0 for k even.

The Fourier series is therefore given by

f∞(x) =
4

π

[
sin(x) +

sin(3x)

3
+

sin(5x)

5
+ ...

]
.

Odd numbers may be expressed as (2j − 1) for j = 1, 2, ... and therefore the truncated
Fourier series may be expressed as follows,

fN (x) =
4

π

[(N+1)/2]∑
j=1

sin((2j − 1)x)

2j − 1
, x ∈ [−L,L] .

Actually fN (x), for x ∈ R, is an approximation of the periodic continuation of f(x), i.e. of
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the following function,

fcont.(x) =

 −1 , x ∈ ((2k − 1)π, 2kπ),

1 , x ∈ (2kπ, (2k + 1)π),
k ∈ Z, x ∈ R.

Figure 2.1 shows fcontinued(x) as well as fN (x) for N = 1, 3, 5, 11, and 23. Notice how the
approximation improves with increasing N . Also notice how the Fourier approximation
finds it difficult to approximate well near the discontinuities in fcontinued(x). This behaviour
(overshoot and strong oscillations close to the discontinuity) is called the Gibbs phenomenon.
If the periodic continuation of the function f(x) does not contain any discontinuities, then
the Gibbs phenomenon is absent. Example 2.2 illustrates this.

Figure 2.1: The Fourier series of the square wave.

EXAMPLE 2.2

Find the Fourier series of f(x) = |x| on [−π, π].

Since f(x) is even, all bk = 0.

The relevant Fourier coefficients are

a0 =
2

π

∫ π

0
x dx =

1

π

[
π2

2

]
= π

and

ak =
2

π

∫ π

0
x cos(kx)dx =

2

k2π
[(−1)k − 1] =


−4

k2π
for k odd,

0 for k even.
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Therefore, the Fourier series approximating f(x) is

f∞(x) =
π

2
− 4

π

[
cosx+

cos(3x)

32
+

cos(5x)

52
+ ...

]
,

or, in terms of the summation symbol, the truncated Fourier series may be expressed as

fN (x) =
π

2
− 4

π

[(N+1)/2]∑
j=1

(
cos((2j − 1)x)

(2j − 1)2

)
.

Figure 2.2 shows a periodic continuation of f(x) as well as fN (x) for N = 1, 3, 5, 7, and 15.
Notice that the Gibbs phenomenon is absent.

Figure 2.2: The Fourier series of the “roof-top” function.

Convergence

We shall not discuss the convergence of Fourier series in detail, but only mention the following:

If f(x) is continuous at x0, then

lim
N→∞

fN (x0) = f(x0) . (2.3)

If f(x) is discontinuous at x0, then

lim
N→∞

fN (x) =
1

2

[
f(x0 − 0) + f(x0 + 0)

]
. (2.4)

Here the notation f(x0 − 0) is an abbreviation for limε→0 f(x0 − ε) and similarly, f(x0 + 0) is
an abbreviation for limε→0 f(x0 + ε).

For example, the Fourier series of Example 2.1 is discontinuous at x0 = 0, and therefore the
average over the discontinuity is 1

2(1− 1) = 0. This may be confirmed by calculating f∞(0):

f∞(0) =
4

π

[
sin(0) +

sin(0)

3
+

sin(0)

5
+ ...

]
= 0 .
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2.2 Orthogonality of the Fourier functions

“In this section we show that the sine and cosine functions used in the Fourier series form an
orthogonal set.

Before we start, you are reminded of the following identities:

sin kπ = 0 for k ∈ Z ,

cos kπ = (−1)k for k ∈ Z ,

cosA cosB = 1
2 [cos(A−B) + cos(A+B)] ,

sinA sinB = 1
2 [cos(A−B)− cos(A+B)] ,

sinA cosB = 1
2 [sin(A−B) + sin(A+B)] .

These identities will be needed subsequently.”

The Fourier basis functions

Consider the following set of functions, {φk(x)}, k = 0, 1, ..., N with

φ0(x) = 1

φ2k(x) = cos(kπx/L) for k = 1, 2, ..., N

φ2k−1(x) = sin(kπx/L) for k = 1, 2, ..., N .

We shall show that this set is orthogonal on the interval [−L,L].

We firstly check that the even functions (i.e. the cosines and 1) are orthogonal:∫ L

−L
φ2j(x)φ2k(x) dx

=

∫ L

−L
cos(jπx/L) cos(kπx/L) dx

=



∫ L

−L

1
2(cos(jπx/L− kπx/L) + cos(jπx/L+ kπx/L)) dx if j 6= k

∫ L

−L

1
2(1 + cos(2kπx/L)) dx if j = k 6= 0

∫ L

−L
1 dx if j = k = 0

=



1

2

[
sin((j − k)πx/L)

(j − k)π/L
+

sin((j + k)πx/L)

(j + k)π/L

]L
−L

if j 6= k

1

2

[
x+

sin(2πkx/L)

2πk/L

]L
−L

if j = k 6= 1[
x
]L
−L

if j = k = 0
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yielding ∫ L

−L
φ2j(x)φ2k(x) dx =


0 if j 6= k

L if j = k 6= 0

2L if j = k = 0 .

Next we check that the odd functions (i.e. the sines) are orthogonal:∫ L

−L
φ2j−1(x)φ2k−1(x) dx

=

∫ L

−L
sin(jπx/L) sin(kπx/L) dx

=


∫ L

−L

1
2(cos(jπx/L− kπx/L)− cos(jπx/L+ kπx/L)) dx if j 6= k

∫ L

−L

1
2(1− cos(2kπx/L)) dx if j = k

=


1

2

[
sin((j − k)πx/L)

(j − k)π/L
− sin((j + k)πx/L)

(j + k)π/L

]L
−L

if j 6= k

1

2

[
x− sin(2kπx/L)

2kπ/L

]L
−L

if j = k

=

 0 if j 6= k

L if j = k .

Two functions with opposite parity (i.e.
one is odd, the other is even) are obviously
orthogonal on [−L,L], so that we do not
need to check this by integrating out.

To summarise, this set of functions has
the following property,

∫ L

−L
φj(x)φk(x) dx =


0 j 6= k

L j = k 6= 0

2L j = k = 0 .

Figure 2.3 shows the first seven Fourier
functions.

Figure 2.3: The first seven Fourier functions.
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2.3 Derivation of the Fourier series

“Two concepts have been established now:

(1) The Fourier functions form an orthogonal set,

(2) Using orthogonal functions to approximate a given function over the interval of ortho-
gonality, creates a diagonal system that is easy to solve.

Let us now put these two ideas together.”

You are reminded that the set of Fourier functions are given by

φ0(x) = 1

φ2k(x) = cos(kπx/L) for k = 1, 2, ..., N

φ2k−1(x) = sin(kπx/L) for k = 1, 2, ..., N .

For a given fixed N , we consider the space of all functions of the form

fN (x) =
2N∑
j=0

cjφj(x) . (2.5)

fN (x) is sometimes called a trigonometric polynomial of degree N .

We may want to approximate a given function f(x) : [−L,L]→ R, by fN (x).

If fN (x) is the least squares approximation to f(x) on [−L,L], the theory derived in Paragraph
1.7.2 shows that the coefficients of the least squares approximation are found from

cj =
1

L

∫ L

−L
f(x)φj(x) dx for j = 1, ..., 2N (2.6)

and

c0 =
1

2L

∫ L

−L
f(x) dx . (2.7)

Unfortunately the fact that ‖φ0‖2 = 2L instead of L like all the other basis functions, forces
us to write it down separately.

The variable x in (2.6) is simply an integration variable, and should not be confused with
the x in (2.5) where it denotes the independent variable on which the function is defined.
Therefore, in (2.6), x may be replaced by any other symbol.

Relabeling the coefficients

A more convenient way to express the series in (2.5), is to relabel the coefficients so that the
index is the same as the frequency, and so that each type of function, sine and cosine, has its
own coefficient.
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Let

a0 = 2c0

ak = c2k for k = 1, 2, ..., N

bk = c2k−1 for k = 1, 2, ..., N.

The Fourier series, fN (x), and the Fourier coefficients, {ak, k = 0, 1, ...} and {bk, k = 1, 2, ...},
may now be expressed as follows:

Fourier Series

fN (x) =
a0

2
+

N∑
k=1

ak cos(kπx/L) +
N∑
k=1

bk sin(kπx/L) (2.8)

Fourier Series Coefficients

a0 =
1

L

∫ L

−L
f(x) dx

ak =
1

L

∫ L

−L
f(x) cos(kπx/L) dx for k = 1, 2, ..., N

bk =
1

L

∫ L

−L
f(x) sin(kπx/L) dx for k = 1, 2, ..., N

(2.9)

The Fourier series representation of f(x) is therefore

fN (x) =
1

2L

∫ L

−L
f(x) dx+

N∑
k=1

[
1

L

∫ L

−L
f(x) cos(kπx/L) dx

]
cos(kπx/L)

+

N∑
k=1

[
1

L

∫ L

−L
f(x) sin(kπx/L) dx

]
sin(kπx/L) ,

(2.10)

where fN (x) approximates f(x) on the interval [−L,L]. However, note that fN (x) is actually
a periodic function with period 2L. On the real axis, x ∈ (−∞,∞), fN (x) approximates the
periodic continuation of f(x).

When N is finite, we refer to (2.8) as a Fourier approximation or truncated Fourier series of
f(x). If N →∞, then (2.8) is called a Fourier series.
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2.4 Derivation of the complex Fourier series

“In this section we show that, by using complex variables, a more symmetric and compact
formula may be obtained for the Fourier series. Before we start, you are reminded of the
following:

e±iθ = cos θ ± i sin θ ,

sin θ =
eiθ − e−iθ

2i
,

cos θ =
eiθ + e−iθ

2
.

These identities will be used throughout this section.”

Let {ak} and {bk} be the Fourier coefficients of the function f(x) defined on [−L,L]. We
introduce a new set of coefficients, viz. {ck, k = −N,−N + 1, ...,−1, 0, 1, ..., N − 1, N}. These
are given by

c0 = 1
2a0

ck = 1
2(ak − ibk)

c−k = 1
2(ak + ibk)

 for k = 1, 2, ..., N .
(2.11)

The original coefficients may be found from {ck} by means of the following formulae

a0 = 2c0

ak = ck + c−k

bk = i(ck − c−k)

 for k = 1, 2, ..., N .
(2.12)

The Fourier series may then be expressed as

fN (x) =
a0

2
+

N∑
k=1

[ak cos(kπx/L) + bk sin(kπx/L)]

= c0 +
N∑
k=1

[(ck + c−k) cos(kπx/L) + i(ck − c−k) sin(kπx/L)]

= c0 +

N∑
k=1

[ck (cos(kπx/L) + i sin(kπx/L)) + c−k (cos(kπx/L)− i sin(kπx/L))]

= c0e
0 +

N∑
k=1

[
cke

ikπx/L + c−ke
−ikπx/L

]
.

The complex Fourier series may therefore be written as:

Complex Fourier Series

fN (x) =
N∑

k=−N
cke

ikπx/L (2.13)
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A new formula for the Fourier coefficients can be obtained as follows:

c±k = 1
2(ak ∓ ibk)

=
1

2

[
1

L

∫ L

−L
f(x) cos(kπx/L) dx ∓ i

L

∫ L

−L
f(x) sin(kπx/L) dx

]

=
1

2L

∫ L

−L
f(x)(cos(kπx/L) ∓ i sin(kx)) dx

=
1

2L

∫ L

−L
f(x)e∓ikπx/L dx (2.14)

and

c0 = 1
2a0 =

1

2L

∫ L

−L
f(x)e0 dx .

The case k = 0 is therefore already covered by (2.14) and the formula for the complex Fourier
coefficients is:

Complex Fourier Series Coefficients

ck =
1

2L

∫ L

−L
f(x)e−ikπx/L dx for k = −N, ..., N (2.15)

In this formulation f(x) may even be a complex function of a real variable x.

An alternative way to establish the complex Fourier series, is to consider the set of functions

{φk(x) = eikπx/L, k ∈ Z}

and show that they are orthogonal on the interval [−L,L]. The result is as follows,

∫ L

−L
φk(x)φj(x) dx =

 0, k 6= j,

2L, k = j.
(2.16)

The formula for the Fourier approximation of f(x) on [−L,L] follows from (2.16) and (1.23).
(Note however that in Paragraph 1.7.2 only real basis functions were considered.)
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EXAMPLE 2.3

Find the complex Fourier series of f(x) = ex, on [−2, 2].

ck =
1

2× 2

∫ 2

−2
exe−ikπx/2 dx

=
1

4

ex(1−ikπ/2)

(1− ikπ/2)

∣∣∣∣∣
2

−2

=
sinh(2− ikπ)

2− ikπ
and the Fourier series is

f∞(x) =

∞∑
k=−∞

sinh(2− ikπ)

2− ikπ eikπx/2. (2.17)

Figure 2.4: The truncated Fourier series with N = 15.

Although the Fourier approximation (2.17) might seem complex, this function is in fact
real as should be the case given that f(x) is a real function. The Fourier approximation
(2.17) may be expanded and then simplified, yielding:

f∞(x) =
sinh(2)

2
+
(
e2 − e−2

) ∞∑
k=1

(−1)k

4 + k2π2

[
2 cos

(
kπx

2

)
− kπ sin

(
kπx

2

)]
. (2.18)

CHECK BOX 2.1

Check for yourself that (2.17) and (2.18) are indeed equivalent.
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2.5 Half range and quarter range series

For a function defined on x ∈ [−L,L] (the “full interval”) the cos+sin Fourier series is
straightforward. One must calculate the ak’s and the bk’s in the normal way (using (2.9)).

However, in many applications a function f(x) is supplied on only some part of the interval,
and it is required that some of the Fourier coefficients must be zero. This means that the
function must be completed by using copies or reflections of f(x) to “fill up” the rest of the
interval. The most important series of this type are the so-called half range series and quarter
range series.

2.5.1 Fourier half range series

The half range series is simple: The function f(x) is given on x ∈ [0, L], and the Fourier series
must have either only sine terms, or only cosine terms.

2.5.1.1 Only sine terms in the series

The function is given on x ∈ [0, L], and

f(x) =
∞∑
k=1

bk sin(kπx/L).

Since only sine terms occur in the series, it is the series of an odd function. The function f(x)
must therefore be completed on the interval [−L,L] as an odd function, i.e.

fcompleted(x) =

 f(x), x ∈ [0, L),

−f(−x), x ∈ [−L, 0).

Figure 2.5 shows f(x) as well as fcompleted(x). Just note that it is not necessary to integrate
over the whole interval. Because fcompleted is odd, we have

bk =
2

L

∫ L

0
f(x) sin(kπx/L) dx .

Figure 2.5: An odd completion of f(x).
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2.5.1.2 Only cosine terms in the series

The function is given on x ∈ [0, L], and

f(x) =
a0

2
+
∞∑
k=1

ak cos(kπx/L).

Since only cosine terms occur in the series, it is the series of an even function. The function
f(x) must therefore be completed on the interval [−L,L] as an even function, i.e.

fcompleted(x) =

 f(x), x ∈ [0, L),

f(−x), x ∈ [−L, 0).

Figure 2.6 shows f(x) and fcompleted(x). Once again only integration over [0, L] is needed,

ak =
2

L

∫ L

0
f(x) cos(kπx/L) dx .

Figure 2.6: An even completion of f(x).

2.5.2 Fourier quarter range series

With the quarter range series only one quarter of the function is supplied and it is required
that its Fourier series has only sine or cosine terms and in addition there is the requirement
that all the even coefficients should be zero (or alternatively, all the odd coefficients should be
zero).

We shall illustrate this by considering an even function where only the odd terms remain.
The function f(x) is given on x ∈ [0, L], and it is required that its Fourier series must be of
the following form:

f(x) =

∞∑
k = 1
k odd

ak cos

(
kπx

2L

)
.

Since only cosine terms occur in the series, it is the series of an even function. Since the
arguments of the cosine functions are of the form kπx/(2L), the function is periodic on
[−2L, 2L], but the function is given only over [0, L]. This means that only a quarter of the
full function is supplied. Figure 2.7 shows the setup.

It is clear that f(x) must be completed on the interval [−2L, 2L] as an even function. Let the
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Figure 2.7: Only one quarter of the function is supplied

part of the completed function between [L, 2L] be g(x), so that fcompleted is given by

fcompleted(x) =


g(−x), x ∈ [−2L,−L),

f(−x), x ∈ [−L, 0),

f(x), x ∈ [0, L),

g(x), x ∈ [L, 2L).

We need to find the relationship between f(x) and g(x).

The Fourier coefficients are

2, because an even function is integrated only over half the interval

↙

ak =
2

(2L)

[∫ L

0
f(x) cos

(
kπx

2L

)
dx+

∫ 2L

L
g(x) cos

(
kπx

2L

)
dx

]
.

↖
(2L), because the full period is now 4L

(2.19)

Consider the second integral

X =

∫ 2L

L
g(x) cos

(
kπx

2L

)
dx.

In order to convert the limits to [0, L], we substitute x = 2L− y, into X then

X =

∫ 0

L
g(2L− y) cos

(
kπ

2L
(2L− y)

)
(−dy)

=

∫ L

0
g(2L− y) cos

(
kπ

2L
(2L− y)

)
dy

=

∫ L

0
g(2L− y) cos

(−kπy
2L

+ kπ

)
dy

=

∫ L

0
g(2L− y)

[
cos

(−kπy
2L

)
cos(kπ)− sin

(−kπy
2L

)
sin(kπ)

]
dy

= (−1)k
∫ L

0
g(2L− y) cos

(
kπy

2L

)
dy

... using x again as integration variable ...

= (−1)k
∫ L

0
g(2L− x) cos

(
kπx

2L

)
dx . (2.20)
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Substituting (2.20) back into (2.19) yields

ak =
1

L

∫ L

0

(
f(x) + (−1)kg(2L− x)

)
cos

(
kπx

2L

)
dx .

We now impose the requirement that all ak must be zero for even k, i.e.

0 =
1

L

∫ L

0

(
f(x) + g(2L− x)

)
cos

(
kπx

2L

)
dx .

This can only be valid for all k, if

f(x) + g(2L− x) = 0, for x ∈ [0, L),

that is,
g(x) = −f(2L− x), for x ∈ [L, 2L).

Then g(x) is just f(x) that is flipped about the y-axis, as well as about the x-axis, and shifted
to the interval [L, 2L].

Figure 2.8 shows f(x) and fcompleted(x).

Once again only integration over [0, L] is needed, since for odd k, we have

ak =
1

L

∫ L

0

(
f(x)− g(2L− x)

)
cos

(
kπx

2L

)
dx,

and substituting g(2L− x) = −f(x), gives

ak =
2

L

∫ L

0
f(x) cos

(
kπx

2L

)
dx.

There are four types of quarter range series. The formulae for each may be derived as in the
above example. The formulae are listed in the table below and typical graphs are shown in
Figure 2.9.

Figure 2.8: The completion of f(x) on [−2L, 2L].
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Table 2.1: The four types of quarter range series shown in Figure 2.9.

(A) fcmpl(x) =


−f(2L+ x), x ∈ [−2L,−L)

+f(−x), x ∈ [−L, 0)

+f(x), x ∈ [0, L)

−f(2L− x), x ∈ [L, 2L)

f(x) = a1 cos
(
πx
2L

)
+ a3 cos

(
3πx
2L

)
+ a5 cos

(
5πx
2L

)
+ ...

(B) fcmpl(x) =


+f(2L+ x), x ∈ [−2L,−L)

+f(−x), x ∈ [−L, 0)

+f(x), x ∈ [0, L)

+f(2L− x), x ∈ [L, 2L)

f(x) = 1
2
a0 + a2 cos

(
2πx
2L

)
+ a4 cos

(
4πx
2L

)
+ a6 cos

(
6πx
2L

)
+ ...

(C) fcmpl(x) =


+f(2L+ x), x ∈ [−2L,−L)

−f(−x), x ∈ [−L, 0)

+f(x), x ∈ [0, L)

−f(2L− x), x ∈ [L, 2L)

f(x) = b2 sin
(
2πx
2L

)
+ b4 sin

(
4πx
2L

)
+ b6 sin

(
6πx
2L

)
+ ...

(D) fcmpl(x) =


−f(2L+ x), x ∈ [−2L,−L)

−f(−x), x ∈ [−L, 0)

+f(x), x ∈ [0, L)

+f(2L− x), x ∈ [L, 2L)

f(x) = b1 sin
(
πx
2L

)
+ b3 sin

(
3πx
2L

)
+ b5 sin

(
5πx
2L

)
+ ...

−2L  −L   0   L  2L

f(x)

−2L  −L   0   L  2L

(A)

−2L  −L   0   L  2L

(B)

−2L  −L   0   L  2L

(C)

−2L  −L   0   L  2L

(D)

Figure 2.9: Examples of the four types of quarter series on [−2L, 2L] using the same f(x).
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PROBLEM SET 2: The Fourier series

1. (a) Without the help of a symbolic mathematical computation program (e.g.
MATHEMATICA), find the sin+cos Fourier series of

f(x) = 1− |x| , x ∈ [−1, 1)

by hand.

(b) Find a formula (of infinitely many terms) for π2 by evaluating the above Fourier
series at x = 0. Also check the formula numerically by summing the first ten
thousand terms.

2. Do the following by hand (without the help of a symbolic mathematical computation
program, e.g. MATHEMATICA).

Use MATLAB (or any other suitable software) to draw graphs of the Fourier approxim-
ation on the function (specify a value for L if applicable). Use enough terms to render
a sensible representation (but not so much that one cannot differentiate between the
function and the Fourier series).

Find the sin+cos Fourier series of

(a)

f(x) =


1, x ∈ (−2,−1)

0, x ∈ (−1, 1)

−1, x ∈ (1, 2)

(b)

f(x) =


1, x ∈ (−2,−1)

0, x ∈ (−1, 1)

1, x ∈ (1, 2)

(c)

f(x) =


0, x ∈ (−2, 0)

1, x ∈ (0, 1)

0, x ∈ (1, 2)

(d)

f(x) =

 0, x ∈ (−L,L/2)

1, x ∈ (L/2, L)

(e)
f(x) = |x| , x ∈ [−π, π)

(f)
f(x) = x, x ∈ (−π, π)
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(g)
f(x) = 1− x2, x ∈ [−1, 1)

(h)
f(x) = |sin(x)| , x ∈ [−π, π)

You may check your answer with e.g. MATHEMATICA.

Be careful: There might be special cases for k where the denominator of a term in the
series is zero. These special cases for k must be integrated separately.

3. Write down two different functions of your own choice (defined on a finite interval) with
the following properties:

- f(x), whose periodic extension is discontinuous (has a jump somewhere),

- g(x), whose periodic extension is continuous, but its first derivative is discontinuous.

Do not use any functions given in this problem set, i.e. create your own functions.

Calculate the sin+cos Fourier series of f(x) by hand and redo it in a symbolic computation
program, e.g. MATHEMATICA. Hand in both the handwritten work as well as a print
out of your computer work.

Find the Fourier series of g(x) by only using a symbolic computation program, e.g.
MATHEMATICA. Illustrate the function and its Fourier approximation with suitable
plots.

4. Do the following by hand (without the help of a symbolic mathematical computation
program, e.g. MATHEMATICA).

Use MATLAB (or any other suitable software) to draw graphs of the Fourier approxim-
ation on the function (specify a value for L if applicable). Use enough terms to render
a sensible representation (but not so much that one cannot differentiate between the
function and the complex Fourier series).

Find the complex Fourier series of

(a)

f(x) =

 0, x ∈ [−π, 0)

x, x ∈ (0, π)

(b)

f(x) =

 0, x ∈ (−L, 0]

xe−x, x ∈ (0, L)

(c)
f(x) = e−|x|, x ∈ [−1, 1)

You may check your answer with e.g. MATHEMATICA.

Be careful: There might be special cases for k where the denominator of a term in the
series is zero. These special cases for k must be integrated separately.

5. Solve a complex Fourier series (do not use a function given in this problem set, i.e.
create your own function) in any other suitable symbolic mathematical computation
program, e.g. MATHEMATICA, and illustrate its convergence graphically.
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Chapter 3

The Fourier transform

3.1 Introduction

“The formula for the Fourier coefficients links a periodic function f(x) to an infinite set of
coefficients ck, and the formula for the Fourier series transforms these coefficients back to
f(x). There is therefore the notion of going ‘back and forth’ between f(x) and ck. We may
consider the ck to be a ‘transform’ of f(x), and f(x) to be the ‘inverse transform’ of ck.

The continuous Fourier transform extends this notion to functions f(x) that are not periodic.”

We restate the Fourier formulae for a complex series here:

c(k) =
1

2L

∫ L

−L
f(x)e−ikπx/L dx , for k ∈ Z, (3.1)

f(x) =
∞∑

k=−∞
c(k)eikπx/L , for x ∈ R. (3.2)

Note that we have replaced ck with a new notation c(k), implying that c is a function of k –
it is in fact a discrete function defined on k ∈ Z.

It will be shown in the next section that the formulae for the Fourier transform (FT) and the
inverse Fourier transform (IFT), can be derived from (3.1) and (3.2).

If f(x) is defined on x ∈ (−∞,∞), then f(x) is square integrable if
∫∞
−∞ |f(x)|2dx∗ is finite

(which can only hold if limx→±∞ f(x) = 0). The FT of f(x) is then given by F (ξ) below.
F (ξ) is then also square integrable and f(x) can be recovered from F (ξ) by using the formula
for the IFT.

Fourier Transform

F (ξ) =

∫ ∞
−∞

f(x)e−iξxdx (3.3)

Inverse Fourier Transform

f(x) =
1

2π

∫ ∞
−∞

F (ξ)eiξxdξ (3.4)

∗|f(x)|2 = f(x)f(x)
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Note that f is a function of x, while F is a function of ξ. In practical applications x may be
measured for example in m, then ξ is measured in m−1, or x may be measured for example in
s, then ξ is measured in s−1, i.e. Hz. The variable x is referred to as “physical space” while
the variable ξ is referred to a “frequency space”. Both f(x) and F (ξ) represent the same
function: f(x) is a physical space representation and F (ξ) is a frequency space representation.

We shall employ the notation that functions will be written with lowercase Latin symbols,
and their corresponding FTs will be denoted by the corresponding uppercase letters. We
shall further use the notation that the corresponding frequency of x is given by its Greek
counterpart, ξ, and, likewise, the corresponding frequency of y is given by η. For example,
the FT of g(x) is G(ξ) and the FT of r(y) is R(η).

We shall now show some examples.

EXAMPLE 3.1

Find the FT of f(x), where

f(x) =

 1 |x| < 1,

0 |x| > 1.

F (ξ) =

∫ ∞
−∞

f(x)e−iξxdx

=

∫ 1

−1
1 · e−iξxdx

=

[
e−iξx

−iξ

]1

−1

=
2

ξ

[
e−iξ − eiξ
−2i

]

=
2 sin(ξ)

ξ
.

f(x)

x

(a) f(x)

F (ξ)

ξ

(b) F (ξ)

Figure 3.1: The function f(x) of Example 3.1
and its Fourier transform, F (ξ).
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EXAMPLE 3.2

Find the FT of

f(x) =

 sin(ωx) |x| < 1,

0 |x| ≥ 1,

where ω is a constant.

F (ξ) =

∫ ∞
−∞

f(x)e−iξxdx

=

∫ 1

−1
sin(ωx) · e−iξxdx

=

∫ 1

−1

eiωx − e−iωx
2i

e−iξxdx

=
1

2i

[
ei(ω−ξ)x

i(ω − ξ) −
ei(−ω−ξ)x

−i(ω + ξ)

]1

−1

= −i
[
ei(ω−ξ) − e−i(ω−ξ)

2i(ω − ξ) +
e−i(ω+ξ) − ei(ω+ξ)

2i(ω + ξ)

]

= i

[
sin(ω + ξ)

(ω + ξ)
− sin(ω − ξ)

(ω − ξ)

]
.

f(x)

x

(a) f(x) where ω = 3π

Im(F (ξ))

ξ

(b) F (ξ) where ω = 3π

Figure 3.2: The function f(x) of Example 3.2 and its Fourier transform, F (ξ).
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3.2 Derivation of the Fourier transform from the Fourier series

“The Fourier transform is a continuous analogue of the semi-discrete Fourier series. We shall
now show how the Fourier series and the Fourier transform are related and then illustrate this
relation by means of an example.”

Consider the formulae (3.1) and (3.2) for the complex Fourier series, again:

c(k) =
1

2L

∫ L

−L
f(x)e−ikπx/L dx, for k ∈ Z, (3.5)

f(x) =

∞∑
k=−∞

c(k)eikπx/L, for x ∈ R. (3.6)

The Fourier series approximates the periodic continuation of a function f(x) that is defined on
x ∈ (−L,L), whereas the Fourier transform approximates a function f(x) that is defined on
x ∈ (−∞,∞). Therefore, to convert from a Fourier series to a Fourier transform, an infinite
“window” must be enforced on the Fourier series, i.e. L must be increased to infinity. From
(3.5), one would expect from the 1/L scaling of the function and its frequency, that c(k) and
the frequency of c(k) will decrease (i.e. shrinks vertically and gets wider horizontally) with
increasing L. We now try to retain the shape of the function as L→∞ by “scaling back” the
shrinking and widening effect.

Let
ξk = k∆ξ , k ∈ Z, (3.7)

where
∆ξ =

π

L
. (3.8)

Therefore

ξk =
kπ

L
, k ∈ Z . (3.9)

Multiply (3.5) by 2L, yields

F (ξk) =

∫ L

−L
f(x)e−ikπx/L dx =

∫ L

−L
f(x)e−iξkx dx , (3.10)

where
F (ξk) = 2Lc(k) . (3.11)

The reason for including a factor 2 is simply to end up with a unit coefficient as required by
the format of the Fourier transform, (3.3).

Now, let L→∞, then ∆ξ tends to zero and ξk becomes continuous and (3.10) turns into

F (ξ) =

∫ ∞
−∞

f(x)e−iξx dx . (3.12)

This is the formula for the Fourier transform of f(x) (compare to (3.3)).
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How can f(x) be recovered from F (ξ)?

Take (3.6), substitute (3.9), and replace c(k) by F (ξk)/(2L):

f(x) =

∞∑
k=−∞

1

2L
F (ξk)e

iξkx. (3.13)

Note that, from (3.8),
1

2L
=

∆ξ

2π
, yielding

f(x) =
1

2π

∞∑
k=−∞

F (ξk)e
iξkx∆ξ , (3.14)

that may be expressed as integration by using the rectangle rule. Taking the limit as L→∞,
yields

f(x) =
1

2π

∫ ∞
−∞

F (ξ)eiξx dξ (3.15)

which is the formula for the inverse Fourier transform of F (ξ) (compare to (3.4)).

It often happens that the integral in (3.15) cannot be solved analytically. Equation (3.15) is
then an integral representation of f(x), as will be discussed in Paragraph 3.3.

A specific example:

To clarify the theory behind the transition from the Fourier series coefficients (3.5) to the
Fourier transform (3.12), we shall consider a particular example of a square wave pulse.

For L > 1 let

f(x) =


0, if x ∈ [−L,−1),

1, if x ∈ (−1, 1),

0, if x ∈ (1, L].

(3.16)

The complex Fourier coefficients of f(x) are given by

c(k) =
1

2L

∫ 1

−1
1 · e−iπkx/L dx =

1

πk
sin(πk/L). (3.17)

The coefficients may also be expressed as

c(k) =
1

L

(
sin(πk/L)

πk/L

)
(3.18)

which may be recognised as the sinc function with argument (πk/L), and the function is
scaled by 1/L.

Figure 3.3 shows f(x) in the first column and c(k) in the second column for four values of L,
viz. L = 5, L = 10, L = 15, and L = 20. As would be expected from the 1/L scaling, the
function c(k) shrinks vertically with increasing L. Furthermore, c(k) gets wider horizontally
with increasing L, which is expected from the scaling of the argument by π/L.
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Figure 3.3: The rectangular pulse function, its Fourier coefficient, and its scaled Fourier coefficient,
for L = 5, 10, 15, 20.

In order to retain the basic function sinc(πk/L), as L→∞, the shrinking and widening effect
may be “scaled back” by imposing (3.9) and (3.11), yielding

F (ξk) = 2

(
sin(ξk)

ξk

)
,

as we expected (see Example 3.1).
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Now, as L→∞, F (ξk) retains the basic shape of the sinc function. However, note that the
increment ∆ξ decreases to zero as L increases to infinity. This means that as L → ∞, ξk
becomes a continuous variable. The third column in Figure 3.3 shows F (ξk) for the same four
values of L. Note that the “shape” of F stays constant but the spacing between consecutive
values of ξk becomes smaller.

3.3 Integral representations

Since the IFT of the FT of a function f(x), is equal to f(x), we may express f(x) as the IFT
of the FT of f(x). Let us try that with the function in Example 3.1.

Consider the function

f(x) =

 1, |x| < 1,

0, |x| > 1.

From Example 3.1 we know that the FT of f(x) is

F (ξ) =
2 sin(ξ)

ξ
.

Give an integral representation of f(x).

The function, f(x), may also be expressed as the IFT of the FT:

f(x) =
1

2π

∫ ∞
−∞

2 sin(ξ)

ξ
eixξ dξ

=
1

π

∫ ∞
−∞

sin(ξ)

ξ
cos(xξ) dξ +

i

π

∫ ∞
−∞

sin(ξ)

ξ
sin(xξ) dξ

... but the second integral is the integral of an odd function over a symmetric interval,

and is therefore zero ...

=
1

π

∫ ∞
−∞

sin(ξ)

ξ
cos(xξ) dξ.

In other words:

1

π

∫ ∞
−∞

sin(ξ)

ξ
cos(xξ) dξ =

 1, |x| < 1,

0, |x| > 1.

This gives a new way to express the rectangular pulse function. It is called an integral
representation of a piecewise defined function. In order to describe the rectangular pulse
function mathematically, we may either use the piecewise definition (the right hand side), or
define the function as a single expression containing an infinite integral (the left hand side).
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3.4 Properties of the Fourier transform

“Why would anyone want to compute the Fourier transform of a function? It is because some
of the properties of the FT allow us to do some operations much easier in the frequency
domain than in the physical domain. After the operation has been completed we can return
to physical space by applying the IFT.

We shall now list many of the properties of the FT (most without derivation).”

We shall use the notation
F
[
f(x)

]
x→ξ

= F (ξ),

which means the Fourier transform of f is F and the physical variable x is associated with
the frequency variable ξ.

The IFT will be denoted by

F−1
[
F (ξ)

]
ξ→x

= f(x),

which means the inverse Fourier transform of F is f and the frequency variable ξ is associated
with the physical variable x.

3.4.1 Parity and complex values

It can be shown that for a function with definite parity, the parity is retained in the transition
from physical to frequency space. For odd functions, a real function becomes imaginary
in frequency space and vice versa, and, for even functions, a real (or imaginary) function
stays real (or imaginary) in frequency space. This is summarised in Table 3.1. The Fourier
transform of a function with no particular parity, is also without parity.

Table 3.1: The following is true of functions with definite parity which is real only, or imaginary only.

f(x) F (ξ)

real & even real & even

real & odd imaginary & odd

imaginary & even imaginary & even

imaginary & odd real & odd

In Tables 3.2 and 3.3 graphs of some square integrable functions are shown together with
their Fourier transforms. We have chosen functions that are all real and have definite parity.
Their corresponding FTs then are either real or imaginary and also have definite parity.
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Table 3.2: Even functions with their Fourier transforms.

Function Fourier Transform

(A) Roof-top function

f(x) =

{
1− |x|, x ∈ [−1, 1]

0, otherwise
F (ξ) =

2(1− cos ξ)

ξ2

f(x)

x

F (ξ)

ξ

(B) Exponential decay

f(x) = e−|x| F (ξ) =
2

1 + ξ2

f(x)

x

F (ξ)

ξ

(C) Gauss function

f(x) = e−
1
2x

2
F (ξ) =

√
2πe−

1
2 ξ

2

f(x)

x

F (ξ)

ξ
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Table 3.3: Odd functions with their Fourier transforms.

Function Fourier Transform

(D) Double square wave function

f(x) =


−1, x ∈ [−1, 0]

1, x ∈ [0, 1]

0, otherwise

Im(F (ξ)) =
2(cos ξ − 1)

ξ

f(x)

x

Im(F (ξ))

ξ

(E) Double roof-top function

f(x) =


−2− x, x ∈ [−2,−1]

x, x ∈ [−1, 1]

2− x, x ∈ [1, 2]

0, otherwise

Im(F (ξ)) =
4 sin ξ(cos ξ − 1)

ξ2

f(x)

x

Im(F (ξ))

ξ

(F) Scaled Gaussian derivative

f(x) = xe−x
2

Im(F (ξ)) = − 1
2

√
πξe−ξ

2/4

f(x)

x

Im(F (ξ))

ξ
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3.4.2 Linearity

F
[
αf(x) + βg(x)

]
x→ξ

= αF (ξ) + βG(ξ) (3.19)

This is easily proven by using the linearity of integration.

3.4.3 Scaling the argument

F
[
f(βx)

]
x→ξ

=
1

|β|F (ξ/β) (3.20)

Physically this means that when a function is stretched wider, its Fourier transform becomes
narrower and vice versa. It is this effect that is responsible for the Heisenberg uncertainty
principle in physics, i.e. the more accurate the momentum of a quantum particle is determined,
the less precisely its position can be known, and vice versa. This is because the momentum
wave function of a particle is the FT of the position wave function.

3.4.4 Shifting the argument

F
[
f(x+ ω)

]
x→ξ

= eiωξF (ξ) (3.21)

This effect is often used in applications to classify functions regardless of their particular shift.

3.4.5 Differentiation

F
[
dnf(x)

dxn

]
x→ξ

= (iξ)nF (ξ) (3.22)

This is perhaps one of the most useful properties of the Fourier transform. It means that
differentiating n times in physical space is equivalent to multiplying the FT by the n-th power
of iξ in frequency space.

This formula relates the n-th power of a function to its n-th derivative. For square integrable
functions, this formulation provides a way to compute fractional derivatives of a function.

This property will be derived here only for the case n = 1. You may use induction to generalise
this result for all positive integer n. You are reminded that square integrable functions have
the property that limx→±∞ f(x) = 0. This is also true for any derivative of a square integrable
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function.

F
[
f ′(x)

]
x→ξ

=

∫ ∞
−∞

f ′(x)e−ixξ dx

=
[
f(x)e−ixξ

]∞
−∞
−
∫ ∞
−∞

f(x)
d

dx
e−ixξ dx

... the first term is zero because f(x) is square integrable ...

= −(−iξ)
∫ ∞
−∞

f(x)e−ixξ dx

= iξF (ξ)

3.5 The Gauss function

The function e−x
2

appears often in statistics and physics. It is called the Gauss function or
just the Gaussian (and in statistics, a scaled version of it is called the normal distribution).
Figure 3.4 shows this bell shaped function.

f(x)

x
−3 −2 −1 321

1

Figure 3.4: The Gauss function, f(x) = e−x
2

.

We shall now attempt to find the FT of this function. Let us first check the integral of the
function i.e.

∫
e−x

2
dx. This integral is usually expressed in terms of a new special function

called the error-function. However, if the limits of integration are infinite, the value of this
integral can be found without the aid of the error function. The following special trick will be
used.

Let

I =

∫ ∞
−∞

e−x
2
dx,

then

I2 =

(∫ ∞
−∞

e−x
2
dx

)(∫ ∞
−∞

e−y
2
dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy .

This is an area integral over the entire Cartesian plane. Now transform to polar coordinates:
Let r2 = x2 + y2, and tan θ = y/x, then the area element dxdy is transformed to rdθdr and
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the limits change to r ∈ [0,∞) and θ ∈ [0, 2π], yielding

I2 =

∫ 2π

0

∫ ∞
0

e−r
2
r dr dθ

=

∫ 2π

0

[
−e−r2

2

]∞
0

dθ

=

∫ 2π

0

1
2 dθ

= π .

Therefore
I =

√
π .

In order to find the FT of the Gauss function, another special technique is used:

F (ξ) =

∫ ∞
−∞

e−x
2
e−ixξ dx.

This integral cannot be found analytically, but let us use the following technique:
Differentiate the function to ξ,

dF (ξ)

dξ
=

∫ ∞
−∞
−ixe−x2e−ixξ dx

=
i

2

[
e−x

2
e−ixξ

]∞
−∞
− i

2

∫ ∞
−∞

(−iξ)e−x2e−ixξ dx

= −ξ
2
F (ξ) ,

which is a differential equation in ξ,

dF (ξ)

dξ
= −ξ

2
F (ξ) .

The solution is:
F (ξ) = Ke−ξ

2/4 ,

where K is an integration constant. However note that

F (0) =

∫ ∞
−∞

e−x
2
dx =

√
π ,

therefore K =
√
π and

F (ξ) =
√
πe−ξ

2/4 . (3.23)

This is an interesting FT pair: The Gauss function is (apart from some scaling) its own
Fourier transform!
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3.6 The Cos and Sin transforms

“The Fourier transform is applied to functions defined on x ∈ (−∞,∞), and therefore it can
only be used in the solution of PDEs where the domain is x ∈ (−∞,∞). Often the domain is
rather x ∈ [0,∞), and we need to have a transform with appropriate derivative properties
that acts on this domain. Both the Cos transform and the Sin transform can perform this
role.

With both the Cos transform and the Sin transform, there is, however, an extra piece of
information that is needed at the point x = 0 in order to apply their respective derivative
properties. But, in a well-posed boundary condition on the domain x ∈ [0,∞), there is also
an extra condition needed at the point x = 0, and this supplies the information needed by the
Cos or Sin transform.”

3.6.1 The Cos transform

We now introduce a new transform called the Cos transform, abbreviated with CosTF. It is
actually not really new, it is just a variant of the FT.

We shall use the notation
C[f(x)]x→ξ

to denote the CosTF of the function f(x), where the frequency variable associated with x is ξ.
We shall also often employ the shorter notation FC(ξ) to denote the CosTF of f(x).

Consider an even real function f(x) defined on x ∈ (−∞,∞). Its Fourier transform is given
by

F (ξ) =

∫ ∞
−∞

f(x)e−ixξ dx

=

∫ ∞
−∞

f(x) cos(xξ) dx− i
∫ ∞
−∞

f(x) sin(xξ) dx

... the latter integral disappears because f(x) sin(xξ) is odd ...

= 2

∫ ∞
0

f(x) cos(xξ) dx.

Let us define the relationship between the CosTF and the FT as

FC(ξ) =
1

2
F (ξ). (3.24)

In other words

C[f(x)]x→ξ =

∫ ∞
0

f(x) cos(xξ) dx. (3.25)

Although the original f(x) was defined over the entire real line, the CosTF can be viewed as
a transform for functions only defined on x ∈ [0,∞). Note that FC(ξ) is an even function of
ξ, and at this stage it may be defined for all ξ ∈ (−∞,∞), even though x lies only in [0,∞).
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In order to transform back, note that

f(x) =
1

2π

∫ ∞
−∞

2FC(ξ)eixξ dξ

=
1

2π

[∫ ∞
−∞

2FC(ξ) cos(xξ) dξ + i

∫ ∞
−∞

2FC(ξ) sin(xξ) dξ

]
... once again, the latter integral disappears because FC(ξ) sin(xξ) is odd ...

=
2

π

∫ ∞
0

FC(ξ) cos(xξ) dξ .

Therefore the inverse Cos transform, abbreviated by ICosTF, is given by

C−1[FC(ξ)]ξ→x =
2

π

∫ ∞
0

FC(ξ) cos(xξ) dξ. (3.26)

We now have a transform that operates on the region [0,∞), and this can be used to solve
boundary value problems on the semi-infinite domain x ∈ [0,∞), t ∈ [0,∞).

3.6.2 The Sin transform

There is a similar transform that operates on the domain x ∈ [0,∞). It is called the Sin
transform, and is abbreviated by SinTF. We shall likewise also use the S[f(x)]x→ξ to denote
the SinTF of a function f(x), and similarly, we shall also use the shorter notation FS(ξ) to
denote the SinTF of a function f(x).

The SinTF can be derived from the FT by considering an odd real function g(x) defined on
x ∈ (−∞,∞). The Fourier transform of g(x) is given by

G(ξ) =

∫ ∞
−∞

g(x)e−ixξ dx

=

∫ ∞
−∞

g(x) cos(xξ) dx− i
∫ ∞
−∞

g(x) sin(xξ) dx

... the first integral disappears because g(x) cos(xξ) is odd ...

= −2i

∫ ∞
0

g(x) sin(xξ) dx

We now define the relationship between the SinTF and the FT as

GS(ξ) =
i

2
G(ξ). (3.27)

In other words

S[g(x)]x→ξ =

∫ ∞
0

g(x) sin(xξ) dx. (3.28)
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Note that GS(ξ) is an odd function of ξ, because it is the imaginary part of the FT of a real
odd function.

In order to transform back, note that

g(x) =
1

2π

∫ ∞
−∞

2

i
GS(ξ)eixξ dξ

=
1

2π

[∫ ∞
−∞
−2iGS(ξ) cos(xξ) dξ + i

∫ ∞
−∞
−2iGS(ξ) sin(xξ) dξ

]
... once again, the first integral disappears because GS(ξ) cos(xξ) is odd ...

=
2

π

∫ ∞
0

GS(ξ) sin(xξ) dξ.

Therefore the inverse Sin transform, abbreviated by ISinTF, is given by

S−1[GS(ξ)]ξ→x =
2

π

∫ ∞
0

GS(ξ) sin(xξ) dξ. (3.29)

Both the CosTF and the SinTF are defined only for square integrable functions on the interval
[0,∞).

3.6.3 Derivative properties of the Cos and Sin transforms

For our purposes, it is only the second derivative that is used in solving second order PDEs via
transform techniques (Chapter 5). We shall therefore only consider the appropriate transform
of the second derivative of a function here.

Consider

C[f ′′(x)]x→ξ =

∫ ∞
0

f ′′(x) cos(xξ)dx

=
[
f ′(x) cos(xξ)

]∞
0
−
∫ ∞

0
f ′(x)(−ξ) sin(xξ)dx

=
[
0− f ′(0)

]
+ ξ

∫ ∞
0

f ′(x) sin(xξ)dx

= −f ′(0) + ξ

([
f(x) sin(xξ)

]∞
0
−
∫ ∞

0
f(x)(ξ) cos(xξ)dx

)
= −f ′(0) + ξ

(
0− f(0)× 0− ξFC(ξ)

)
= −f ′(0)− ξ2FC(ξ) .

Therefore

C[f ′′(x)]x→ξ = −f ′(0)− ξ2FC(ξ) . (3.30)
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There is a similar identity for the SinTF of a second derivative, and it is derived in similar
manner. We shall not derive it here, but simply state it as,

S[f ′′(x)]x→ξ = ξf(0)− ξ2FS(ξ) . (3.31)

3.6.4 The CosTF and SinTF of some functions

It is often easier to find the FT of a function defined on [0,∞), but extended to (−∞,∞) as
even (in the case of the CosTF) or odd (in the case of the SinTF) and then to use (3.24) or
(3.27) to find its appropriate Cos or Sin transform. We shall do a few examples below.

EXAMPLE 3.3

Find the CosTF of f(x) = e−b
2x2 , where b is a fixed parameter.

Following from (3.23) and (3.20), FT of f(x) is

F (ξ) =

√
π

|b| e
−ξ2/(4b2) . (3.32)

Using (3.24), it then follows that the Cos transform is

FC(ξ) =
1

2
F (ξ) =

√
π

2 |b|e
−ξ2/(4b2) .

EXAMPLE 3.4

Find the ICosTF of
FC(ξ) = e−c

2ξ2 , x ∈ [0,∞)

where c is a fixed parameter.

Once again we shall make use of what we already know of the Fourier transform to help us.
From Example 3.3, (3.32), and the definition for the FT and the IFT ((3.3) and (3.4)), we
know that:

G(η) =

∫ ∞
−∞

e−b
2y2e−iyη dy =

√
π

|b| e
−η2/(4b2) (3.33)

and that

g(y) =
1

2π

∫ ∞
−∞

(√
π

|b| e
−η2/(4b2)

)
eiyη dη = e−b

2y2 . (3.34)
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Following from (3.29), we want to find

f(x) =
2

π

∫ ∞
0

e−c
2ξ2 cos(xξ) dξ . (3.35)

Our objective is to rewrite this equation such that it has the same form as either (3.33) or
(3.34), because their solutions are known.

Since the integrand in (3.35) is an even function, this equation may be rewritten as

f(x) =
1

π

∫ ∞
−∞

e−c
2ξ2 cos(xξ) dξ , (3.36)

and, since the integral of an odd function over (−∞,∞) is zero, we may add
(
e−c

2ξ2i sin(xξ)
)

to the integrand yielding

f(x) =
1

π

∫ ∞
−∞

e−c
2ξ2eixξ dξ . (3.37)

Using the FT, (3.33), to solve f(x), (3.37):

f(x) =
1

π

∫ ∞
−∞

e−c
2ξ2eixξ dξ

... set ξ = −y ...

= − 1

π

∫ −∞
∞

e−c
2(−y)2eix(−y) dy

=
1

π

[∫ ∞
−∞

e−c
2y2e−iyx dy

]

... note that the square bracket is the same as (3.33) where b→ c and η → x ...

=
1

π

[√
π

|c| e
−x2/(4c2)

]

=
1

|c| √πe
−x2/(4c2)

Using the IFT, (3.34), to solve f(x), (3.37):

f(x) =
1

π

∫ ∞
−∞

e−c
2ξ2eixξ dξ

=
2√
π

[
1

2π

∫ ∞
−∞

√
πe−c

2ξ2eixξ dξ

]

... set c2 = 1/(4b2) ...
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=
2 |b|√
π

[
1

2π

∫ ∞
−∞

√
π

|b| e
−ξ2/(4b2)eixξ dξ

]

... note that the square bracket is the same as (3.33) where y → x and η → ξ ...

=
2 |b|√
π

[
e−b

2x2
]

... back substitution by setting b2 = 1/(4c2) and |b| = 1/(2 |c|) yields ...

=
1

|c|√πe
−x2/(4c2)

EXAMPLE 3.5

Find the SinTF of f(x) = xe−b
2x2 , where b is a fixed parameter.

Note that f(x) is related to the first derivative of g(x) = e−b
2x2 , because

f(x) =
−1

2b2
g′(x) .

The SinTF of f(x) is therefore given by

FS(ξ) =
i

2
F (ξ)

=

(
i

2

)(−1

2b2

)
F [g′(x)]x→ξ

... using the derivative rule for FTs ...

=

(
i

2

)(−1

2b2

)
(iξ)1F [g(x)]x→ξ

... this Fourier transform is known (see (3.32)) ...

=
−i
4b2

(iξ)

[√
π

|b| e
−ξ2/(4b2)

]

=

√
π

4 |b|3
ξe−ξ

2/(4b2).
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PROBLEM SET 3: The Fourier transform

1. (a) Prove the following properties of the Fourier transform:

(i) F
[
f(x− α)

]
x→ξ

= e−iαξF (ξ)

(ii) F
[
f(βx)

]
x→ξ

=
1

|β|F (ξ/β)

(iii) F
[
dn

dxn
f(x)

]
x→ξ

= (iξ)nF (ξ)

(b) Formulate the relationship between the parity (even or odd) and “complexness”
(real or imaginary) of f(x) and F (ξ). Then prove it. (You probably first need to
discover it, then formulate it, then prove it.)

2. Without the help of a symbolic computation program, e.g. MATHEMATICA, find the
Fourier transform of

(a)
f(x) = e−|x| , x ∈ (−∞,∞)

(b)

f(x) =

 x, |x| < 1

0, |x| ≥ 1

(c)

f(x) =

 sin (ωx), |x| < a

0, |x| ≥ a

Here a and ω are an arbitrary constants. Also give the integral representation of f(x)
by using the inverse Fourier transform. Simplify your expression (by hand) as far as
possible.

Draw a simple graph of the integral representation in MATLAB (or any other suitable
programming language) by using the rectangular rule for integration. Also show the
function itself, f(x), on the graph to show that it corresponds. (Include your code in
your assignment.)

3. (a) Without the help of a symbolic computation program, e.g. MATHEMATICA, find
the Fourier transform of

f(x) = e−a|x| , a > 0 .

Keep a constant (but arbitrary).

(b) Give the integral representation of f(x) by using the inverse Fourier transform
and draw a simple graph of the integral representation in MATLAB (or any other
suitable programming language) by using the rectangular rule for integration.
(Include your code in your assignment.)
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(c) By using the result of 3(a), show that∫ ∞
−∞

(
cosx

1 + x2

)
dx =

π

e
.

4. (a) Without the help of MATHEMATICA, find the Fourier transform of

f(x) =

 sin (nπx), |x| < 1

0, |x| ≥ 1

where n is an arbitrary constants.

(b) Give the integral representation of f(x) by using the inverse Fourier transform.
Simplify your expression (by hand) as far as possible.

Draw a simple graph of the integral representation in MATLAB (or any other
suitable programming language), for n is not an integer, by using the rectangular
rule for integration. Also show the function itself, f(x), on the graph to show that
it corresponds. (Include your code in your assignment.)

(c) Use the result of 4(b) to find the definite integral of an expression on the interval
(−∞,∞). Choose your own expression.

5. (a) Without the help of a symbolic mathematical computation program, e.g. MATH-
EMATICA, find the Fourier transform of

f(x) =

 1− |x| , |x| < 1

0, |x| ≥ 1 .

(b) Give the integral representation of f(x) by using the inverse Fourier transform.
Simplify your expression (by hand) as far as possible.

Draw a simple graph of the integral representation in MATLAB (or any other
suitable programming language) by using the rectangular rule for integration. Also
show the function itself, f(x), on the graph to show that it corresponds. (Include
your code in your assignment.)

(c) By using the result of 5(a), find the Fourier transform, G(ξ), of

g(x) =
1− cos(px)

x2

where p is a positive constant.

(d) Use the result of 5(b) to find the definite integral of an expression on the interval
(−∞,∞). Choose your own expression.

6. First show that ∫ ∞
−∞

e−u
2
du =

√
π

and then show that

F
[
e−(x/b)2

]
x→ξ

=
√
πbe−( 1

2
bξ)

2

(1)

where b is a positive constant. Some hints on how to do this was covered in class.
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Do not use the Fourier transform of the Gaussian function derived in Paragraph 3.5 as
“a known fact”.

7. Design your own function f(x) defined on x ∈ (−∞,∞) that contains an arbitrary
parameter (say a). Then find the Fourier transform of f(x) as well as its integral
representation. Also write down the values of two definite integrals on (−∞,∞). Use
your own creativity.


