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3.4 The Fourier Transform

3.4.1 Formulation and examples

[The formula for the Fourier coefficients links a periodic function f(x) to an
infinite set of coefficients ck, and the formula for the Fourier series transforms
these coefficients back to f(x). There is therefore the notion of going ‘back
and forth’ between f(x) and ck. We may consider the ck to be a ‘transform’
of f(x), and f(x) to be the ‘inverse transform’ of ck.

The continuous Fourier transform extends this notion to functions f(x) that
are not periodic.]

We restate the Fourier formulae for a complex series here:

c(k) =
1

2L

∫ L

−L
f(x)e−ikπx/Ldx for k ∈ ZZ, (3.1)

f(x) =
∞∑

k=−∞
c(k)eikπx/L, for x ∈ IR. (3.2)

Note that we have replaced ck with a new notation c(k), implying that c is a
function of k — it is in fact a discrete function defined on k ∈ ZZ.

It will be shown in the next section that the formulae for the Fourier Transform
(FT) and the Inverse Fourier Transform (IFT), can be derived from (3.1) and
(3.2).

If f(x) is defined on x ∈ (−∞,∞), and f(x) is square integrable (i.e.
∫∞
−∞ |f(x)|2dx

is finite) then the FT of f(x) is given by F (u) below. F (u) is then also square
integrable and f(x) can be recovered form F (u) by using the formula for the
IFT.

Fourier Transform:

F (u) =

∫ ∞

−∞
f(x)e−ixudx

(3.3)

Inverse Fourier Transform:

f(x) =
1

2π

∫ ∞

−∞
F (u)eiuxdu

(3.4)

Note that f is a function of x, while F is a function of u. In practical appli-
cations x may be measured for example in m, then u is measured in m−1, or
x may be measured for example in s, then u is measured in s−1, i.e. Hz. The
variable x is referred to as ‘physical space’ while the variable u is referred to
a ‘frequency space’. Both f(x) and F (u) represent the same function: f(x) is
a physical space representation and F (u) is a frequency space representation.

We shall now show some examples.
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Example 3.4.1

Find the FT of f(x), where

f(x) =


1 |x| < 1,

0 |x| > 1.

Solution:

F (u) =

∫ ∞

−∞
f(x)e−iuxdx

=

∫ 1

−1
1 · e−iuxdx

=

[
e−iux

−iu

]1
−1

=
2

u

[
e−iu − eiu

−2i

]

=
2 sin(u)

u
.

−1 1

f(x) F(u)

Figure 9. The function f(x) of Example 3.4.1 and its Fourier Transform, F (u).

Example 3.4.2

Find the FT of

f(x) =


sin(ωx) |x| < 1,

0 |x| ≥ 1.

where ω is a constant.
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Solution:

F (u) =

∫ ∞

−∞
f(x)e−iuxdx

=

∫ 1

−1
sin(ωx) · e−iuxdx

=

∫ 1

−1

eiωx − e−iωx

2i
e−iuxdx

=
1

2i

[
ei(ω−u)x

i(ω − u)
− ei(−ω−u)x

−i(ω + u)

]1
1

= −i

[
ei(ω−u) − e−i(ω−u)

2i(ω − u)
+

e−i(ω+u) − ei(ω+u)

2i(ω + u)

]

= i

[
sin(ω + u)

(ω + u)
− sin(ω − u)

(ω − u)

]
.

−1 1

f(x) Im(F(u))

Figure 10. The function f(x), of Example 3.4.2 and it Fourier Transform, F (u).

Figure 11 shows the graphs of some square integrable functions together with
their Fourier transforms. We have chosen functions that are all real and have
definite parity. Their corresponding FT’s then are either real or imaginary
and also have definite parity. These properties will be discussed in a following
section. The Fourier transform of a function with no particular parity, is also
without parity.

We shall employ the notation that functions will be written with lowercase
Latin symbols, and their corresponding FT’s will be denoted by the corre-
sponding uppercase letters. We shall further use the notation that the corre-
sponding frequency of x is given by u and the corresponding frequency of y is
given by v. For example, the FT of g(x) is G(u) and the FT of r(y) is R(v).
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−1 1

f(x)(A) F(u)

f(x)(B) F(u)

f(x)(C) F(u)

−1 1

f(x)(D) Im(F(u))

−2−1 1 2

f(x)(E) Im(F(u))

f(x)(F) Im(F(u))

Figure 11. Some functions with their Fourier transforms.
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Function Fourier Transform

(A) f(x) =
{

1− |x|, x ∈ [−1, 1]
0, otherwise F (u) = 2(1−cosu)

u2

(B) f(x) = e−|x| F (u) = 2
1+u2

(C) f(x) = e−
1
2
x2

F (u) =
√
2πe−

1
2
u2

(D) f(x) =

{
−1, x ∈ [−1, 0]
1, x ∈ [0, 1]
0, otherwise

F (u) = i2(cosu−1)
u

(E) f(x) =


−2− x, x ∈ [−2,−1]
x, x ∈ [−1, 1]
2− x, x ∈ [1, 2]
0, otherwise

F (u) = i4 sinu(cosu−1)
u2

(F) f(x) = xe−x2
F (u) = − 1

2
i
√
πue−u2/4

3.4.2 Derivation of the FT from the Fourier series

[The Fourier Transform is a continuous analogue of the semi discrete Fourier
series. We shall now show how the Fourier series and the Fourier transform
are related.]

We shall start by assuming the formulae for the complex Fourier series:

c(k) =
1

2L

∫ L

−L
f(x)e−ikπx/Ldx for k ∈ ZZ, (3.5)

f(x) =
∞∑

k=−∞
c(k)eikπx/L, for x ∈ IR. (3.6)

The Fourier series changes into the Fourier transform when L is increased to
infinity, and the coefficients are scaled suitably.

A particular example

We shall take a particular example to study this effect. For L > 1 let

f(x) =


0 if x ∈ [−L,−1),

1 if x ∈ (−1, 1),

0 if x ∈ (1, L].

(3.7)
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The complex Fourier coefficients of f(x) are given by

c(k) =
1

2L

∫ 1

−1
1 · e−iπkx/Ldx =

1

πk
sin(πk/L). (3.8)

The coefficients may also be expressed as

c(k) =
1

L

(
sin(πk/L)

πk/L

)
. (3.9)

which may be recognised as the sinc function with argument (πk/L), and the
function is scaled by 1/L.

Figure 12. The rectangular pulse function, its FT and its scaled FT, for L = 4, 8, 20.

Figure 4.2 shows f(x) in the first column and c(k) in the second column for
three values of L, viz. L = 4, L = 8 and L = 20. As would be expected
from the 1/L scaling, the function c(k) shrinks vertically with increasing L.
Furthermore, c(k) gets wider horizontally with increasing L, which is expected
from the scaling of the argument by π/L.

In order to retain the basic function sinc(πk/L), as L → ∞, the shrinking and
widening effect may be ‘scaled back’ as follows:

Let

uk =
πk

L
,

i.e.
uk = k∆u, k ∈ ZZ, where ∆u =

π

L
,

and let
F (uk) = 2Lc(k).
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The reason for including a factor 2 is simply to end up later with a unit
coefficient in stead of a 1

2 . For the particular example above,

F (uk) = 2

(
sin(uk)

uk

)
.

Now as L → ∞, F (uk) retains the basic shape of the sinc function. However,
note that the increment ∆u decreases to zero as L increases to infinity. This
means that as L → ∞, uk becomes a continuous variable. The third column in
Figure 4.2 shows F (uk) for the same three values of L. Note that the ‘shape’
of F stays constant but the spacing between consecutive values of uk becomes
smaller.

The general case

Look at the formulae for the complex Fourier series, again:

c(k) =
1

2L

∫ L

−L
f(x)e−ikπx/Ldx for k ∈ ZZ, (3.10)

f(x) =
∞∑

k=−∞
c(k)eikπx/L, for x ∈ IR. (3.11)

Multiply equation (3.10) by L and replace Lc(k) by F (uk),

F (uk) =

∫ L

−L
f(x)e−ikπx/Ldx =

∫ L

−L
f(x)e−iukxdx

Let L → ∞ then uk becomes continuous and

F (u) =

∫ ∞

−∞
f(x)e−iuxdx. (3.12)

This is the formula for the Fourier transform of f(x) (compare to (3.3)).

How can f(x) be recovered from F (u) ? Take equation (3.11) and substitute
uk for πk/L, and also replace c(k) by F (uk)/(2L),

f(x) =
∞∑

k=−∞

1

2L
F (uk)e

iukx. (3.13)

Note that 1
2L = ∆u

2π , so that (3.13) may be expressed as integration by using
the rectangle rule,

f(x) =
1

2π

∞∑
k=−∞

F (uk)e
iukx∆u. (3.14)

Taking the limit as L → ∞, yields

f(x) =
1

2π

∫ ∞

−∞
F (u)eiuxdu (3.15)

which is the formula for the inverse Fourier transform of F (u) (compare to
(3.4)).
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3.4.3 Integral representations

Since the IFT of the FT of a function f(x), is equal to f(x), we may express
f(x) as the IFT of the FT of f(x). Let us try that with the function in
Example 1.

f(x) =


1, |x| < 1,

0, |x| > 1.
,

and the FT of f(x) is

F (u) =
2 sin(u)

u
,

therefore f(x) may also be expressed as

f(x) =
1

2π

∫ ∞

−∞

2 sin(u)

u
eixudu

=
1

π

∫ ∞

−∞

sin(u)

u
cos(xu)du+

i

π

∫ ∞

−∞

sin(u)

u
sin(xu)du

..... but the second integral is the integral of an odd function over a symmetric interval,

and is therefore zero.

=
1

π

∫ ∞

−∞

sin(u)

u
cos(xu)du.

In other words:

1

π

∫ ∞

−∞

sin(u)

u
cos(xu)du =


1, |x| < 1,

0, |x| > 1.

This gives a new way to express the rectangular pulse function. It is called
an integral representation of a piecewise defined function. In order to describe
the rectangular pulse function mathematically, we may either use the piecewise
definition (the right hand side), or define the function as a single expression
containing an infinite integral (the left hand side).

3.4.4 The Gauss function

The function e−x2
appears often in statistics and physics. It is called the

Gauss function or just the Gaussian (and in statistics, a scaled version of it is
called the normal distribution). Figure 13 shows this bell shaped function.
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−3 −2 −1 1 2 3

f(x)=exp(−x2)

Figure 13. The Gauss function, f(x) = e−x2

.

We shall now attempt to find the FT of this function. Let us first check
the integral of the function i.e.

∫
e−x2

dx. This integral is usually expressed
in terms of a new special function called the error-function. However, if the
limits of integration are infinite, the value of this integral can be found without
the aid of the error function. The following special trick will be used.

Let

I =

∫ ∞

−∞
e−x2

dx,

then

I2 =

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2dy

)
=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy.

The right hand side is an area integral over the entire Cartesian plane. Now
transform to polar coordinates: Let r2 = x2 + y2, and tan θ = y/x, then the
area element dxdy is transformed to rdθdr and the limits change to r ∈ [0,∞)
and θ ∈ [0, 2π]. Therefore

I2 =

∫ 2π

θ=0

∫ ∞

r=0
e−r2rdrdθ,

=

∫ 2π

θ=0

[
−e−r2

2

]∞
0

dθ,

=

∫ 2π

0

1
2dθ,

= π,

and then

I =
√
π.

In order to find the FT of the Gauss function, another special technique is
used:

F (u) =

∫ ∞

−∞
e−x2

e−ixudx.
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This integral cannot be found analytically, but let us use the following tech-
nique: Differentiate the function to u,

∂F (u)

∂u
=

∫ ∞

−∞
−ixe−x2

e−ixudx,

=
i

2

[
e−x2

e−ixu
]∞
−∞

− i

2

∫ ∞

−∞
(−iu)e−x2

e−ixudx,

= −u

2
F (u).

This is a differential equation in u,

∂F (u)

∂u
= −u

2
F (u).

The solution is:
F (u) = Ke−u2/4,

where K is an integration constant. However note that

F (0) =

∫ ∞

−∞
e−x2

dx =
√
π,

therefore K =
√
π and

F (u) =
√
πe−u2/4.

This is an interesting FT pair: The Gauss function is (apart from some scaling)
its own Fourier transform !

3.4.5 Properties of the FT

[Why would anyone want to compute the Fourier Transform of a function ?
It is because some of the properties of the FT allow us to do some operations
much easier in the frequency domain than in the physical domain. After the
operation has been completed we can return to physical space by applying the
inverse FT.

We shall now list many of the properties of the FT (most without derivation).
]

Notation: We shall use the notation

F
[
f(x)

]
x→u

= F (u),

which means the Fourier transform of f is F and the physical variable x is
associated with the frequency variable u.

The inverse FT will be denoted by

F−1
[
F (u)

]
u→x

= f(x).

which means the Inverse Fourier transform of F is f and the frequency variable
u is associated with the physical variable x.
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Linearity:

F
[
αf(x) + βg(x)

]
x→u

= αF (u) + βG(u).

This is easily proven by using the linearity of integration.

Parity and complex values:

It can be shown that the following is true of functions with definite parity and
which is real only or imaginary only:

f(x) F (u)

real & even real & even
real & odd imaginary & odd
imaginary & even imaginary & even
imaginary & odd real & odd

Attempt to formulate the results of this table in a more concise way.

Scaling the argument:

F
[
f(βx)

]
x→u

=
1

|β|
F (u/β)

Physically this means that when a function is stretched wider, its Fourier
transform becomes narrower and vice versa. It is this effect that is respon-
sible for the Heisenberg uncertainty principle in physics. This is because the
momentum wave function of a particle is the FT of the position wave function.

Shifting the argument:

F
[
f(x+ ω)

]
x→u

= eiωuF (u)

This effect is often used in applications to classify functions regardless of their
particular shift.

Differentiation:

F
[
dnf(x)

dxn

]
x→u

= (iu)nF (u)

This is perhaps one of the most useful properties of the Fourier transform. It
means that differentiating n times in physical space is equivalent to multiplying
the FT by the n-th power of iu in frequency space.

This formula relates the n-th power of a function to its n-th derivative. For
square integrable functions, this formulation provides a way to compute frac-
tional derivatives of a function.

This property will be derived here only for the case n = 1. You may use
induction to generalize this result for all positive integer n.
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You are reminded that square integrable functions have the property that
limx→±∞ f(x) = 0. This is also true for any derivative of a square integrable
function.

F
[
f ′(x)

]
x→u

=

∫ ∞

−∞
f ′(x)e−ixudx

=
[
f(x)e−ixu

]∞
−∞

−
∫ ∞

−∞
f(x)

d

dx
e−ixudx

.... the first term is zero because f(x) is square integrable

= −(−iu)

∫ ∞

−∞
f(x)

d

dx
e−ixudx

= iuF (u)

3.5 The SIN and COS transforms

[The Fourier transform is applied to functions defined on x ∈ (−∞,∞), and
therefore it can only be used in the solution od pdes where the domain is
x ∈ (−∞,∞). Often the domain is rather x ∈ [0,∞), and we need to have
a transform with appropriate derivative properties that acts on this domain.
Both the Sin Transform and the Cos transform can perform this role.

With both the Sin transform and the Cos transform, there is, however, an
extra piece of information that is needed at the point x = 0 in order to apply
their respective derivative properties. But, in a well-posed boundary condition
on the domain x ∈ [0,∞), there is also an extra condition needed at the point
x = 0, and this supplies the information needed by the Sin or Cos transform.
]

3.5.1 The Cos Transform

We now introduce a new transform called the Cos-transform, abbreviated with
CosTF. It is actually not really new, it is just a variant of the FT.

We shall use the notation

C[f(x)]x→ξ,

to denote the CosTF of the function f(x), where the frequency variable asso-
ciated with x is ξ. We shall also often employ the shorter notation FC(ξ) to
denote the CosTF of f(x).

Consider an even real function f(x) defined on x ∈ (−∞,∞). Its Fourier
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transform is given by

F (ξ) =

∫ ∞

−∞
f(x)e−ixξdx

=

∫ ∞

−∞
f(x) cos(xξ)dx− i

∫ ∞

−∞
f(x) sin(xξ)dx

..... The latter integral disappears because f(x) sin(xξ) is odd.

= 2

∫ ∞

0
f(x) cos(xξ)dx.

Let us define the relationship between the CosTF and the FT as

FC(ξ) =
1

2
F (ξ), (3.16)

In other words

C[f(x)]x→ξ =

∫ ∞

0
f(x) cos(xξ)dx. (3.17)

Although the original f(x) was defined over the entire real line, the CosTF
can be viewed as a transform for functions only defined on x ∈ [0,∞). Note
that FC(ξ) is an even function of ξ, and at this stage it may be defined for all
ξ ∈ (−∞,∞), even though x lies only in [0,∞).

In order to transform back, note that

f(x) =
1

2π

∫ ∞

−∞
2FC(ξ)e

ixξdξ

=
1

2π

∫ ∞

−∞
2FC(ξ) cos(xξ)dx+ i

∫ ∞

−∞
2FC(ξ) sin(xξ)dx

..... Once again, the latter integral disappears because FC(ξ) sin(xξ) is odd

=
2

π

∫ ∞

0
FC(ξ) cos(xξ)dx

Therefore Inverse Cos transform, abbreviated by ICosTF, is given by

C−1[FC(ξ)]ξ→x =
2

π

∫ ∞

0
FC(ξ) cos(xξ)dξ. (3.18)

We now have a transform that operates on the region [0,∞), and this can be
used to solve boundary value problems on the semi-infinite domain x ∈ [0,∞),
t ∈ [0,∞).
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3.5.2 The Sin Transform

There is a similar transform that operates on the domain x ∈ [0,∞). It is
called the Sin-transform, and is abbreviated by SinTF. We shall likewise also
use the S[f(x)]x→ξ to denote the SinTF of a function f(x), and Similarly, we
shall also use the shorter notation FS(ξ) to denote the SinTF of a function
f(x).

The SinTF can be derived from the FT by considering an odd real function
g(x) defined on x ∈ (−∞,∞). The Fourier transform of g(x) is given by

G(ξ) =

∫ ∞

−∞
g(x)e−ixξdx

=

∫ ∞

−∞
g(x) cos(xξ)dx− i

∫ ∞

−∞
g(x) sin(xξ)dx

..... The first integral disappears because g(x) cos(xξ) is odd

= −2i

∫ ∞

0
g(x) sin(xξ)dx

We now define the relationship between the SinTF and the FT as

FS [f(x)]x→ξ =
i

2
G(ξ). (3.19)

In other words

GS(ξ) =

∫ ∞

0
g(x) sin(xξ)dx. (3.20)

Note that GS(ξ) is an odd function of ξ, because it is the imaginary part of
the FT of a real odd function.

In order to transform back, note that

g(x) =
1

2π

∫ ∞

−∞

2

i
GS(ξ)e

ixξdξ

=
1

2π

∫ ∞

−∞
−2iGS(ξ) cos(xξ)dx+ i

∫ ∞

−∞
2iGS(ξ) sin(xξ)dx

..... Once again, the first integral disappears because GS(ξ) cos(xξ) is odd.

=
2

π

∫ ∞

0
GS(ξ) sin(xξ)dx.

Therefore Inverse Sin-transform, abbreviated by ISinTF, is given by

S−1[FS(ξ)]ξ→x =
2

π

∫ ∞

0
FC(ξ) sin(xξ)dξ. (3.21)

Both the CosTF and the SinTF are defined only for square integrable functions
on the interval [0,∞).
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3.5.3 The SinTF and CosTF of some functions

It is often easier to find the FT of a function defined on [0,∞), but extended to
(−∞,∞) as even (in the case of the CosTF) or odd (in the case of the SinTF)
and then to use (3.16) or (3.19) to find its appropriate Sin or Cos transform.
We shall do a few examples below.

Example 1:

Find the CosTF of f(x) = e−b2x2
, where b is a fixed parameter.

The FT of f(x) is

F (ξ) =

√
π

b
e−ξ2/(4b2)

Using (3.16), then

FC(ξ) =
1

2
F (ξ) =

√
π

2b
e−ξ2/(4b2)

Example 2:

Find the ICosTF of

FC(ξ) = e−c2ξ2 , x ∈ [0,∞)

where c is a fixed parameter. Once again we shall make use of what we already
know of the Fourier transform to help us.

The FT of f(x) is

F (ξ) =

√
π

c
e−ξ2/(4c2)

We want to find

f(x) =
2

π

∫ ∞

0
e−c2ξ2eixξdξ.

Extend e−c2ξ2 so that it forms an even function on ξ ∈ (−∞,∞). Actually in
this form it is already even on ξ ∈ (−∞,∞).
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Then

f(x) =
2

π

∫ ∞

0
e−c2ξ2eixξdξ

=
1

π

∫ ∞

−∞
e−c2ξ2eixξdξ

=
2k√
π

[
1

2π

∫ ∞

−∞

√
π

k
eξ

2/(4k2)eixξdξ

]

.... where c2 = 1/(4k2), and note how we have deliberately shaped the integrand,

so that it is a known FT.

=
2k√
π
e−k2x2

=
1

c
√
π
e−x2/(4c2), ... after substituting c = 1/(2k) back.

Example 3:

Find the SinTF of f(x) = xe−b2x2
, where b is a fixed parameter.

Note that f(x) is related to the first derivative of g(x) = e−b2x2
, because

f(x) =
−1

2b2
g′(x)

therefore the SinTF of f(x) is given by

FS(ξ) =
i

2
F (ξ)

=

(
i

2

)(−1

2b2

)
F [g′(x)]x→ξ

=

(
i

2

)(−1

2b2

)
(iξ)1F [g(x)]x→ξ

..... using the derivative rule for FT’s.

=
−i

4b
(iξ)

[√
π

b
e−ξ2/(4b2)

]

=

√
π

4b3
ξe−ξ2/(4b2).

3.5.4 Derivative properties of the Cos and Sin transforms

For our purpose it is the second derivative that is used in pdes. We shall
therefore only consider the appropriate transform of the second derivative of
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a function here.

Consider

C[f ′′(x)]x→ξ =

∫ ∞

0
f ′′(x) cos(xξ)dx

=
[
f ′(x) cos(xξ)

]∞
0

−
∫ ∞

0
f ′(x)(−ξ) sin(xξ)dx

=
[
0− f ′(0)

]
+ ξ

∫ ∞

0
f ′(x) sin(xξ)dx

= −f ′(0) + ξ

([
f(x) sin(xξ)

]∞
0

−
∫ ∞

0
f(x)(ξ) cos(xξ)dx

)

= −f ′(0) + ξ
(
0− f(0)× 0− ξFC(ξ)

)
= −f ′(0)− ξ2FC(ξ)

Therefore

C[f ′′(x)]x→ξ = −f ′(0)− ξ2FC(ξ) (3.22)

There is a similar identity for the SinTF of a second derivative, and it is
derived in similar manner. We shall not derive it here, but simply state it as,

S[f ′′(x)]x→ξ = ξf(0)− ξ2FS(ξ) (3.23)


