

Applied Mathematics / *Toegepaste Wiskunde* 20710-214 APPLIED MATRIX METHODS / *TOEGEPASTE MATRIKSMETODES* (2023)

SCHEDULE/ SKEDULE

This table is being modified as the module progresses. / Hierdie tabel word opgedateer soos wat die module vorder.

Those cells colored white are future days and the desciption is "*What is planned for that class*." Selle wat wit ingekleur is, is toekomstige dae en die inhoud daarvan is "*Wat beplan word vir daardie klas.*"

Those cells colored light orange are past days and the entry is "*What has been done in class.*" Selle wat lig oranje ingekleur is, is dae wat verby is en die inhoud daarvan is *"Wat in die klas gedoen is."*

Lecture no Lesing no	Date Datum	Day Dag	Chapter, Section	Contents / Inhoud
1	13-Feb	Mon	[1], [2]	VECTORS: review, notation, lengths, dot product, angles LINES AND PLANES: Lines in 3D
2	14-Feb	Tue	[2]	LINES AND PLANES: Planes in 3D, Examples, intersections of planes, lines
т	15-Feb	Wed		TUT 1: [1] Vectors, length, dot product, angles, Lines in 3D, Planes in 3D TT 1.
3	17-Feb	Fri	[3]	MATRICES: Notation, elements, indices, sizes .The Four views of matrix multiplication, Transposes and rules, The identity matrix and inverses.
4	20-Feb	Mon	[3]	MATRICES: Matrix multiplication, Non-commutativity, Pre- and post multiplication,
5	21-Feb	Tue	[3]	MATRICES: (Symbolic) matrix equations, Square and rectangular matrices, Inverses, Powers of matrices, Diagonal matrices (scales the rows or the columns)
т	22-Feb	Wed		TUT 2: [2] MATRICES, Symbolic solutions TT2
6	24-Feb	Fri	[4]	LU-DECOMP: Permutation matrices, Elementary matrices, pivots, multipliers, LU-decomposition, A 3x3 example
7	27-Feb	Mon	[4]	LU-DECOMP:2x2 systems of equations: row picture, column picture, singularity picture, 3x3 singularity,Elementary matrices, pivots, multipliers, LU-decomposition
8	28-Feb	Tue	[4]	LU-DECOMP: One more 3x3 example, Permutation matrices and row exchanges, A singular case with (a) no solution (b) infinitely many solutions
т	1-Mar	Wed		TUT 3: [3] SYSTEMS, LU-DECOMP TT 3
9	3-Mar	Fri	[4]	SPACES: Vector spaces, Two Closure Rules for Vector spaces, some examples, geometric interpretation as lines and planes through the origin
10	6-Mar	Mon	[5]	SPACES: Introduction to linear independence, examples
11	7-Mar	Tue	[5]	SPACES: INDEPENDENCE, "independence, basis, span, dimension", geometric interpretation of independence, independence in an upper echelon matrix
т	8-Mar	Wed		TUT 4: [4] SPACES TT 4
12	10-Mar	Fri	[5]	COL & NULL SPACES: The Column space and the Null space, Rectangular LU-decomposition, example (landscape), application (parabola through two points)
13	13-Mar	Mon	[6]	COL. & NULL SPACES: Rank of a matrix, Dimension of a space, Underdet syst. Balancing chemical reactions, Overdet. Syst. Example, col,null space,solution
14	14-Mar	Tue	[6]	COL. & NULL SPACES: , Example underdet. system: Find parabola through 2 points. PROJECTIONS AND REFLECTIONS: Projection on a line, the projection matrix
т	15-Mar	Wed		TUT 5: [5] , [6] COL 7 NULL SPACE TT 5
15	17-Mar	Fri	[7]	PROJECTIONS AND REFLECTIONS: Projections on a line, Properties of P, Projection on plane, Properties of P, MATLAB DEMO
16	20-Mar	Mon	[7]	PROJECTIONS AND REFLECTIONS: Summary of projections, Reflections through a line, or a plane. Properties of H
	21-Mar	Tue		HUMAN RIGHTS DAY
т	22-Mar	Wed		TUT 6: [7] Projections & Reflections TT 6
17	24-Mar	Fri	[7]	PROJECTIONS AND REFLECTIONS: Summary of Reflections, Curved mirrors (2D) , Flat mirrors in 3D, application: the retro reflector
18	27-Mar	Mon	[8]	LS-SOLUTIONS: Introduction to Least-Squares solution, derivation of the normal equations. Fitting curves to points, Formulae for a and be of a 'best' line of the form y=ax+b. Fitting a parabola. MATLAB demo
19	28-Mar	Tue	[8]	LS-SOLUTIONS: Summary, Fitting a plane to data. ORTHOGONALITY: Definition, Orthogonal and orthonormal bases, Orthogonal matrixes, Properties of Q.
Т	29-Mar	Wed	[8]	TUT 7: [8] Least-squares solutions TT 7
20	31-Mar	Fri		ORTHOGONALITY: Gram-Schmidt, QR and how to save work, QR full example, reduced QR and least squares solution
				HOLIDAYS (1 Apr - 10 Apr)

21	11-Apr	Tue	[9]	ORTHOGONALITY: Summary of QR, Reduced QR, Solving Overdet. Systems with Reduced QR.
т	12-Apr	Wed	[9]	TUT 8: [9] QR-DECOMP TT 8
22	14-Apr	Fri	[10]	[Monday Timetable] DETERMINANTS: Short revision, EIGENVALUES: Intro, 2x2 example, 3x3 example (factorizable)
23	17-Apr	Mon	[11]	EIGENVALUES: eigenvalues of the 3x3 matrix (general), examples, degenerate example
24	18-Apr	Tue	[11]	EIGENVALUES: Taylor series: a short informal intro, power series and the matrix exponential, difference equations
т	19-Apr	Wed		TUT 9: EIGENVALUES TT 9: eigenvalues, and diagonal decomposition
25	21-Apr	Fri	[12]	DIF'CE EQN's: 1x1 case, solution, 2x2 case, solution with diagonalization, Application: cars in JHB and CPT, second order diff'ce eq as 2x2 system of first order ode
26	24-Apr	Mon	[12]	DIFF'CE EQN's: example: determinants of banded matrices -> the Fibonacci system, full solution, Application - Monopoly
27	25-Apr	Tue	[13]	ODE's: Introduction, Theory, expm of a diagonal matrix, fully worked 2x2 example,
т	26-Apr	Wed		No tut today
	26-Apr	Wed		TEST A1
28	28-Apr	Fri	[13]	ODE'S: Example: Undamped SHM fully worked, Example system of two tanks SYM MATS: Review of complex numbers, the transpose of complex matrices, Proof: Eig-vals of sym-mats
	1-May	Mon		WORKER'S DAY
29	2-May	Tue	[13]	ODE'S: Example: Undamped SHM fully worked, Example system of two tanks SYM MATS: Review of complex numbers, the transpose of complex matrices, Proof: Eig-vals of sym-mats
т	3-May	Wed		TUT 10: [12] DIF'CS EQ'S [13] ODES TT 10:
30	5-May	Fri	[14]	SYMMETRIC MAT's: Example with multiple eigenvalues. Mention Jordan form. QUADRATIC CURVES: introduction, revision of conic sections
31	8-May	Mon	[14]	QUADRATIC CURVES: example done forward (along axes, then rotate, then shift), demo in MATLAB, no shift
32	9-May	Tue	[15]	SVD: introduction, ellipse, MATLAB demo.
т	10-May	Wed		TUT 11: SYM, QUAD-curves TT 11
33	12-May	Fri	[15]	SVD: one example, properties of the SVD, rotate-scale-rotate, rank-1 decomposition
34	15-May	Mon	[15]	SVD: applications, and more examples
35	16-May	Tue	[16]	ROTATION MATRICES: Introduction, Cross-product matrix, properties.
т	17-May	Wed		ТUT 12: SVD TT 12
36	19-May	Fri	[16]	ROTATION MATRICES: full derivation, using trace and transposes to find a and theta, Examples, Applications
	22-May	Mon		EXAMINATION PERIOD STARTS
	10-Jun	Sat		TEST A2
	t.b.a.			TEST A3