AM214-2023: LECTURE 19

ECTURE 19
Least-SQ-FORMulae,
Orthogonality
Solving overset systems

$$
\begin{aligned}
& A \underline{x}=\underline{b}, \quad \text { but } \underline{b} \notin \operatorname{lo}(A) \\
& \tilde{\tilde{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \underline{b}, \quad \text { calculate inverse. } \\
& \underbrace{\left(A^{\top} A\right) \tilde{x}^{\top}=A^{\top} \underline{b}} \quad\left[\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
y \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
4 \\
5
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

FORMULAE FOR FITTING A LINE N points; $\left(x_{j}, y_{j}\right), j=1,2 \ldots N$

Fit: $y=a x+b$
Orerdet system:

$$
\begin{aligned}
& a x_{1}+b=y_{1} \\
& a x_{2}+b=y_{2} \\
& \vdots \\
& a x_{N}+b=y_{N}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
\vdots
\end{array}\right]} \\
& \tilde{x}=\left(A^{\top} A\right)^{-1} A^{\top} \underline{b} \\
& A^{\top} A=\left[\begin{array}{ll}
x_{1} & x_{2} \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots
\end{array}\right]=\left[\begin{array}{ll}
\sum_{j=1}^{N} x_{j}^{2} & \sum x \\
\sum x & N
\end{array}\right] \\
& A^{\top} \underline{b}=\left[\begin{array}{lll}
x_{1} & x_{2} & \cdots \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{l}
\sum x y \\
\sum y
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{x}=\frac{1}{N \Sigma x^{2}-(\Sigma x)^{2}}\left[\begin{array}{cc}
N & -\Sigma x \\
-\Sigma x & \Sigma x^{2}
\end{array}\right]\left[\begin{array}{l}
\Sigma x y \\
\Sigma y
\end{array}\right] \\
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
\frac{N \Sigma_{x y}-\Sigma_{x} \Sigma_{y}}{N \Sigma_{x^{2}}-\left(\Sigma_{x}\right)^{2}} \\
\frac{\Sigma_{x y} \Sigma_{y}-\Sigma_{x} \Sigma_{x y}}{N \Sigma_{x y}-\left(\Sigma_{x}\right)^{2}}
\end{array}\right]} \\
& \sum x^{2 y} \\
& f(x)=a+b \sin (x)+c e^{-5 x}+d x^{2}+\frac{1}{x} \\
& \longleftarrow \text { Can do linear } \\
& \text { regression } \\
& g(x)=a e^{b x}+\sin (c x) \leftharpoonup N_{0} .
\end{aligned}
$$

Fit $f(x)$ to N-points.

$$
\begin{aligned}
& a+b \sin \left(x_{1}\right)+c e^{-5 x_{1}}+d x_{1}^{2}+\frac{p}{x_{1}}=y_{1} \\
& {\left[\begin{array}{lll}
1 & \sin \left(x_{1}\right) & -e^{-5 x_{1}}\left(\cdot x_{1}^{2}\right. \\
1 & \sin \left(x_{2}\right) & e^{-5 x_{1}}
\end{array}\right]\left[\begin{array}{l}
q \\
b \\
c \\
d \\
p
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]}
\end{aligned}
$$

Chapter 9 ORTHOGONALITY
$\{a, b, \leq\}$ is an orthogonal set, if.

$$
\underline{g T} \underline{b}=0, \quad \underline{b}^{T} \leqslant=0, \quad c^{T} \underline{q}=0
$$

$\left\{q_{1}, q_{2}, q_{3}\right\}$ is an orthonormal set,

if. $\quad q_{1}^{\top} q_{2}=0, \quad q_{2}^{\top} q_{3}=0, \quad q_{2}^{\top} q_{1}=0$

$$
q_{1} q_{1}=1, \quad q_{1} q_{2}=1 \quad q_{2}^{\top} q_{3}=1
$$

$$
\begin{aligned}
& \text { Ortogemal matrix: }(n+n) \\
& T=\left[\begin{array}{lll}
1 & 1 & 1 \\
9 & 9 & 91 \\
1 & 1 & 1
\end{array}\right] \\
& 00 . E=2=[2+2.8)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Properties } \\
& \text { (3) })^{\prime} Q=I \\
& \text { (-) } Q^{\top}=Q^{-1} \\
&)_{3} \text { Premult by } Q \text { proserres lengths } \\
& {\left[\begin{array}{c}
\text { it is a rotation, or a reflection, or } \\
\text { a combination }
\end{array}\right]} \\
& \text { () } 4 \text { Premaltiplication by } Q \text { preserves angles. } \\
& \text {-) } Q \text { is full rant. }
\end{aligned}
$$

Proots:
$\left.{ }^{\circ}\right)_{3}$

$$
\begin{aligned}
\underline{b}^{\prime} & =Q \underline{b} \\
\left\|\underline{b}^{\prime}\right\|^{2} & =(Q \underline{b})^{\top}(Q \underline{b}) \\
& =\underline{b}\left(Q^{\top} Q \underline{b}=b \tau b=\|\underline{b}\|^{2}\right.
\end{aligned}
$$

(0)

$$
\begin{aligned}
& \underline{b}^{\prime}=Q \underline{b}, \quad \underline{c}^{\prime}=Q \subseteq \\
& \underline{b}^{\top} \underline{c}=b c \cos \theta, \quad\left(\underline{b}^{\prime}\right)^{\top} \underline{c}^{\prime}=b^{\prime} c^{\prime} \cos \theta^{\prime}
\end{aligned}
$$

$$
(\underline{b})^{\top} \underline{s}^{\prime}=(Q \underline{b})^{\top}(Q \leq)
$$

$$
=b^{\top} Q^{\top} Q_{\leq}=\underline{b} \leq
$$

$$
b_{1}^{1} d \cos \theta^{\prime}=\not \subset \not \subset \cos \theta \quad \longrightarrow \theta=\theta^{\prime}
$$

Four Decomp: LU, QR, SAS, UEV 10

Solve $A x=b$

$$
A=Q R
$$

$$
Q R x=b
$$

$$
R x=Q^{\top} \underline{6}
$$

Any three independent vectors:

Three ORTHOGONAL vectors (mutually orthogonal, but any lengths):

Orthogonal Vectors

Three ORTHONORMAL vectors (mutually othogonal unit vectors):

