STELLENBOSCH UNIVERSITY

FACULTY of ENGINEERING

NUMERICAL METHODS 262 STUDY GUIDE 2019

1. MODULE DETAILS

MODULE CODE	MODULE		SU CREDITS			
36323	NUMERICAL METHODS 262			8		
SEMESTER 2	LECTURE LOAD PER WEEK : 2/, 0p, 1t, 0s week		HOME DEPARTEMENT			
			Mathematical Sciences (Applied Mathematics)			
LECTURERS			OFFICE		PHONE	
Prof N Hale			A410		808-4944	
NIS IVI Steyn			A219		888-2634	
CLASSIFICATION	Mathe- matics	Basic science	Engineer- ing scienc	Design & Synthesis	Computa- tion and IT	Comple- mentary studies
	60%	0%	0%	0%	40%	0%
PREREQUISITE MODULES	PASS (P≥50) None		GENERAL (P≥40) Eng. Mathematics 214		SECONDARY None	
ASSESSMENT-	METHOD		SEMESTER MARK		FINAL MARK	
DETAILS	Flexible Ass	sessment	sment 100/		FORMULA	
See Year Book Parts I and II			Assignments: 10%		0.1 SM+0.4 A1+0.5A2	

2. SPECIFIC OUTCOMES and ASSESSMENT CRITERIA

CAPACITIES (Objectives of the Module)

The student who has successfully completed this module can:

- Solve nonlinear scalar equations with a variety of methods (bisection, Regula-Falsi, Newton, secant). Also nonlinear systems of equations with Newton's method.
- Solve linear systems of equations numerically, as well as the matrix eigenvalue problem.
- Interpolate data using polynomials and splines, as well as least squares data fitting.
- Integrate functions numerically, with methods such as the Trapezium- and Simpsonrules and Gaussian quadrature.
- Solve first order ordinary differential equations (ODEs) with the Euler- and Runge-Kutta methods. Also higher order ODEs and systems.
- Solve simple partial differential equations (PDEs).
- Use MATLAB[®] to handle the above and represent solutions graphically where appropriate.

ACTIVITY	ASSESSMENT CRITERIA	SCOPE
Use Matlab to: (a) exectute vector- and matrix computations. (b) plot 2D and 3D graphs.	The following steps appear to a lesser or greater extent in all problems and are judged according to the level of	<i>Appendix</i> of the text book
Write a Matlab program (M- file) to solve a given problem.	the correct execution according to:	Appendix of the text book
Compute the roots of a given scalar function using one or more of these methods (hand calculation or Matlab): (a) bisection (b) Regula-Falsi (c) Newton (d) secant	 (a) Interpretation of the problem as stated. (b) Deciding what the appropriate method is and applying it correctly. (c) Defining appropriate variables and setting up 	Chapter 3 of the text book (3 rd edition) Ch 2 (2 nd edition)
Derive the Newton formula for the computation of roots. Ditto for secant and Regula-Falsi.	appropriate equations.(d) Numerical solution with either hand calculation or Matlab.	Chapter 3 of the text book (3 rd edition) Ch 2 (2 nd edition)

ACTIVITY	ASSESSMENT CRITERIA	SCOPE
Solve a given nonlinear system of equations using Newton's method.	The following steps appear to a lesser or greater extent in all problems and are judged according to the level of	Chapter 3 of the text book (3 rd edition) Ch 2 (2 nd edition)
Use Matlab to solve a given system of linear equations, also in sparse format.	complexity of the problem and the correct execution according to: (a) Interpretation of the	Chapter 4 of the text book (3 rd edition) Ch 3 (2 nd edition) Chapter 4 of the text book (3 rd edition) Ch 3 (2 nd edition)
Use the built-in functions in Matlab to compute the LU factorisation of a matrix, and also use it to solve $Ax = b$.	 problem as stated. (b) Deciding what the appropriate method is and applying it correctly. (c) Defining appropriate variables and setting up appropriate equations. (d) Numerical solution with 	
Compute vector norms, matrix norms and condition numbers. Use the condition number to quantify the sensitivity of solutions of $Ax = b$ with respect to perturbations in the data.		 correctly. (c) Defining appropriate variables and setting up appropriate equations. (d) Numerical solution with
Derive the normal equations for a least squares fit.	or Matlab.	Chapter 6 of the text book (3 rd edition) Ch 4 (2 nd edition)
Fit a given function to a given set of points in Matlab.		Chapter 6 of the text book (3 rd edition) Ch 4 (2 nd edition)
Fit a spline function to a set of data points in Matlab.		Chapter 6 of the text book (3 rd edition) Ch 4 (2 nd edition)
Use the Lagrange formula to compute the polynomial that interpolates a given set of data points.		Chapter 6 of the text book (3 rd edition) Ch 4 (2 nd edition)
Use the Lagrange formula to derive three-point difference formulas for the first and second derivatives.		Chapter 8 of the text book (3 rd edition) Ch 5 (2 nd edition)
Derivation of the basic and composite trapezium rules for the approximation of definite integrals. Ditto for the Simpson rule. Derivation of the two- point and three-point Gauss rules.		Chapter 9 of the text book (3 rd edition) Ch 6 (2 nd edition)

ACTIVITY	ASSESSMENT CRITERIA	SCOPE
Compute a definite integral numerically with hand calculations and/or Matlab with (a) the trapezium rule, and (b) Simpson's rule. Use Gauss quadrature to approximate a definite integral.	The following steps appear to a lesser or greater extent in all problems and are judged according to the level of complexity of the problem and the correct execution according to:Chapter 9 book (3rd e Ch 6 (2nd e(a) Interpretation of the problem as stated.Chapter 9 book (3rd e Ch 6 (2nd eCh 6 (2nd e Ch 6 (2nd e Ch 6 (2nd e(b) Deciding what the appropriate method is and applying it correctly.Chapter 10 book (3rd e Ch 6 (2nd e(c) Defining appropriate 	Chapter 9 of the text book (3 rd edition) Ch 6 (2 nd edition) Chapter 9 of the text book (3 rd edition)
Transform the interval to [-1,1] if necessary.		Ch 6 (2 nd edition)
Use the Euler / Modified Euler method to solve numerically a DE (initial value problem). Also systems of DEs.		Chapter 10 of the text book (3 rd edition) Ch 7 (2 nd edition)
Write a higher order DE as a system of first-order Des and then solve with Euler's method.		Chapter 10 of the text book (3 rd edition) Ch 7 (2 nd edition)
Solve a given system of ODEs with the aid of a suitable Matlab function.	or Matlab.	Chapter 10 of the text book (3 rd edition) Ch 7 (2 nd edition)
Use the method of finite differences to discretize a two- point boundary value problem on an interval.		Chapter 11 of the text book (3 rd edition) Ch 8 (2 nd edition)
Use the finite difference method to discretize the Laplace equation with prescribed boundary conditions.		Section 16.1 in Zill & Wright, Advanced Engineering Mathematics