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The aim of these notes is to list and explain the basic properties of the Legendre-Fenchel4

transform, which is a generalization of the Legendre transform commonly encountered5

in physics. The precise way in which the Legendre-Fenchel transform generalizes the6

Legendre transform is carefully explained and illustrated with many examples and pictures.7

The understanding of the difference between the two transforms is important because the8

general transform which arises in statistical mechanics is the Legendre-Fenchel transform,9

not the Legendre transform.10

All the results contained here can be found with much more mathematical details11

and rigor in [2]. The proofs of these results can also be found in that reference. A good12

introduction to convex analysis, which is however not easy to find, is [3]; for course notes13

available on the internet, see [1].14

1. Definitions15

Consider a function f .x/ W R! R. We define the Legendre-Fenchel (LF) transform of16

f .x/ by the variational formula17

f �.k/ D sup
x2R
fkx � f .x/g: (1)

We also express this transform by f �.k/ D .f .x//� or, more compactly, by f � D .f /�,18

where the star stands for the LF transform.19

The LF transform of f �.k/ is20

f ��.x/ D sup
k2R
fkx � f �.k/g: (2)

This corresponds also to the double LF transform of f .x/. The double-star notation21

comes obviously from our compact notation for the LF transform:22

f �� D .f �/� D ..f /�/�: (3)
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Remark 1. LF transforms can also be defined using an infimum (min) rather than a23

supremum (max):24

g�.k/ D inf
x2R
fkx � g.x/g: (4)

Transforming one version of the LF transform to the other is just a matter of introducing25

minus signs at the right place:26

� f �.k/ D � sup
x
fkx � f .x/g D inf

x
f�kx C f .x/g; (5)

so that27

g�.q/ D inf
x
fqx � g.x/g; (6)

making the transformations g.x/ D �f .x/ and g�.q/ D �f �.k D �q/.28

Remark 2. The Legendre-Fenchel transform is often referred to in physics as the Legen-29

dre transform. This does not do justice to Fenchel who explicitly studied the variational30

formula (1), and applied it to nondifferentiable as well as nonconvex functions. What31

Legendre actually considered is the transform defined by32

f �.k/ D kxk � f .xk/ (7)

where xk is determined by solving33

f 0.x/ D k: (8)

This form is more limited in scope than the LF transform, as it applies only to differentiable34

functions and, we shall see later, convex functions. In this sense, the LF transform is a35

generalization of the Legendre transform, which reduces (essentially) to the Legendre36

transform when applied to convex, differentiable functions. We shall comment more on37

this later.38

Remark 3. The LF transform is not necessarily self-inverse (we also say involutive);39

that is to say, f �� need not necessarily be equal to f . The equality f �� D f is taken for40

granted too often in physics; we shall see later in which cases it actually holds and which41

other cases it does not.42

Remark 4. The definition of the LF transform can trivially be generalized to functions43

defined on higher-dimensional spaces (i.e., functions f .x/ W Rn ! R, with n a positive44

integer) by replacing the normal real-number product kx by the scalar product k �x, where45

k is a vector having the same dimension as x.46
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Remark 5. (Steepest-descent or Laplace approximation). Consider the definite integral47

F.k; n/ D

Z
R
enŒkx�f .x/�dx: (9)

In the limit n ! 1, it is possible to approximate this integral using Laplace Method48

(or steepest-descent method if x 2 C) by locating the maximum value of the integrand49

corresponding to the maximum value of the exponent kx � f .x/ (assuming that there is50

only one such value). This yields,51

F.k; n/ � exp
�
n sup
x2R
fkx � f .x/g

�
: (10)

It can be proved that the corrections to this approximation are subexponential in n, i.e.,52

lnF.k; n/ D n sup
x2R
fkx � f .x/g C o.n/; (11)

so that53

lim
n!1

1

n
lnF.k; n/ D sup

x2R
fkx � f .x/g: (12)

Remark 6. (The LF transform in statistical mechanics). Let U be the energy function54

of an n-body system. In general, the density �n.u/ of microscopic states of the system55

having a mean energy u D U=n scales exponentially with n, which is to say that56

ln�n D ns.u/C o.n/; (13)

where s.u/ is the microcanonical entropy function of the system. (This can be taken as a57

definition of the microcanonical entropy.) Defining the canonical partition function of the58

system in the usual way, i.e.,59

Zn.ˇ/ D

Z
�n.u/e

�nˇudu; (14)

we can use Laplace Method to write60

'.ˇ/ D lim
n!1

�
1

n
lnZn.ˇ/ D inf

u
fˇu � s.u/g: (15)

Physically, '.ˇ/ represents the free energy of the system in the canonical ensemble. So,61

what the above result shows is that the canonical free energy is the LF transform of the62

microcanonical entropy (' D s�). The inverse result, namely s D '�, is not always true,63

as will become clear later.64
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2. Theory of LF transforms65

The theory of LF transforms deals mainly with two questions:66

Q1: How is the shape of f �.k/ determined by the shape of f .x/, and vice versa?67

Q2: When is the LF transform involutive? That is, when does f �� D ..f /�/� D f ?68

We will see next that these two questions are answered by using a fundamental concept of69

convex analysis known as a supporting line.70

2.1. Supporting lines71

We say that the function f W R! R has or admits a supporting line at x 2 R if there72

exists ˛ 2 R such that73

f .y/ � f .x/C ˛.y � x/; (16)

for all y 2 R. The parameter ˛ is the slope of the supporting line. We further say that a74

supporting line is strictly supporting at x if75

f .y/ > f .x/C ˛.y � x/ (17)

holds for all y ¤ x. For these definitions to make sense, we need obviously to have76

f <1.77

Remark 7. For convenience, it is useful to replace the expression “f admits a supporting78

line at x” by “f is convex at x”. So, from now on, the two expressions mean the same79

(this is a definition). If f does not admit a supporting line at x, then we shall say that f80

is nonconvex at x.81

The geometrical interpretation of supporting lines is shown in Figure 1. In this figure,82

we see that83

� The point a admits a supporting line (f is convex at a). The supporting line has84

the property that it touches f at the point .a; f .a// and lies beneath the graph of85

f .x/ for all x; hence the term “supporting”.86

� The supporting line at a is strictly supporting because it touches the graph of f .x/87

only at a. In this case, we say that f is strictly convex at a.88

� The point b does not admit any supporting lines; any lines passing through .b; f .b//89

must cross the graph of f .x/ at some point. In this case, we also say that f is90

nonconvex at b.91
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Figure 1: Geometric interpretation of supporting lines.

� The point c admits a supporting line which is non-strictly supporting, as it touches92

another point (d ) of the graph of f .x/. (The points c and d share the same93

supporting line.)94

From this picture, we easily deduce the following result:95

Proposition 1. If f admits a supporting line at x and f 0.x/ exists, then the slope ˛ of96

the supporting line must be equal to f 0.x/. In other words, for differentiable functions, a97

supporting line is also a tangent line.98

2.2. Convexity properties99

Before answering Q1 and Q2, let us pause briefly for two important results, which we100

state without proofs.101

Theorem 2. f �.k/ is an always convex function of k (independently of the shape of f ).102

Corollary 3. f ��.x/ is an always convex function of x (again, independently of the103

shape of f ).104

The precise meaning of convex here is that f � (or f ��) admits a supporting line at105

all k (all x, respectively). More simply, it means that f � and f �� are [-shaped.1106

Note that these results tell us already that the LF transform cannot always be involutive.107

Indeed, f ��.x/ is convex even if f .x/ is not, so that f ¤ f �� if f is not everywhere108

convex. We will see later that this is the only problematic case.109

1There seems to be some confusion in the literature about the definitions of “concave” and “convex.” The
Webster (7th Edition), for one, defines a [-shaped function to be concave rather than convex. However, most
mathematical textbooks will agree in defining the same function to be convex. This also agrees with the trick
that was given to me at MIT to remember the difference between concave and convex: concave is \-shaped
like a cave.
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Figure 2: Illustration of the duality property for supporting lines: points of f are trans-
formed into slopes of f �, and slopes of f are transformed into points of f �.

2.3. Supporting line duality110

We now answer our first question (Q1): How is the shape of f �.k/ determined by the111

shape of f .x/, and vice versa? A partial answer is provided by the following result:112

Theorem 4. If f admits a supporting line at x with slope k, then f � at k admits a113

supporting line with slope x.114

This theorem is illustrated in Figure 2. The next theorem covers the special case of115

strict convexity.116

Theorem 5. If f admits a strict supporting line at x with slope k, then f � admits a117

tangent supporting line at k with slope f �0.k/ D x. (Hence f � is differentiable in this118

case in addition to admit a supporting line.)119

2.4. Inversion of LF transforms120

The answer to Q2 (f ‹
D f ��) is provided by the following result:121

Theorem 6. f .x/ D f ��.x/ if and only if f admits a supporting line at x.122

Thus, from the point of view of f .x/, we have that the LF transform is involutive at123

x if and only if f is convex at x (in the sense of supporting lines). Changing our point of124

view to f �.k/, we have the following:125

Theorem 7. If f � is differentiable at k, then f D f �� at x D f �0.k/.126

We will see later with a specific example that the differentiability property of f � is127

sufficient (as stated) but non-necessary for f D f ��. For now, we note the following128

obvious corollary:129
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Corollary 8. If f �.k/ is everywhere differentiable, then f .x/ D f ��.x/ for all x.130

This says in words that the LF transform is completely involutive if f �.k/ is every-131

where differentiable.132

We end this section with another corollary and a result which helps us visualize the133

meaning of f ��.x/.134

Corollary 9. A convex function can always be written as the LF transform of another135

function. (This is not true for nonconvex functions.)136

Theorem 10. f ��.x/ is the largest convex function satisfying f ��.x/ � f .x/.137

Because of this result, we call f ��.x/ the convex envelope or convex hull of f .x/.138

We will precise the meaning of these expressions in the next section.139

3. Some particular cases140

We consider in this section a number of examples to visualize the meaning and application141

of all the results presented in the previous section. All of the examples considered arise in142

statistical mechanics.143

3.1. Differentiable, convex functions144

The LF transform145

f �.k/ D sup
x
fkx � f .x/g (18)

is in general evaluated by finding the critical points xk (there could be more than one)146

which maximize the function147

F.x; k/ D kx � f .x/: (19)

In mathematical notation, we express xk in the following manner:148

xk D arg sup
x
F.x; k/ D arg sup

x
fkx � f .x/g; (20)

where “arg sup” reads “arguments of the supremum,” and mean in words “points at which149

the maximum occurs.”150

Now, assume that f .x/ is everywhere differentiable. Then, we can find the maximum151

of F.x; k/ using the common rules of calculus by solving152

@

@x
F.x; k/ D 0; (21)
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for a fixed value of k. Given the form of F.x; k/, this is equivalent to solving153

k D f 0.x/ (22)

for x given k. As noted before, there could be more than one critical points of F.x; k/154

that would solve here the above differential equation. To make sure that there is actually155

only one solution for every k 2 R, we need to impose the following two conditions on f :156

1. f 0.x/ is continuous and monotonically increasing for increasing x;157

2. f 0.x/!1 for x !1 and f 0.x/! �1 for x ! �1.158

Given these, we are assured that there exists a unique value xk for each k 2 R satisfying159

k D f 0.xk/ and which maximizes F.x; k/. As a result, we can write160

f �.k/ D kxk � f .xk/; (23)

where161

f 0.xk/ D k: (24)

These two equations define precisely what the Legendre transform of f .x/ is (as162

opposed to the LF transform, which is defined with the sup formula). Accordingly, we163

have proved that the LF transform reduces to the Legendre transform for differentiable164

and strictly convex functions. (The strictly convex property results from the monotonicity165

of f 0.x/.) Since f .x/ at this point is convex by assumption, we must have f D f ��166

for all x. Therefore, the Legendre transform must be involutive (always), and the inverse167

Legendre transform is the Legendre transform itself; in symbol,168

f .x/ D kxx � f
�.kx/; (25)

where kx is the unique solution of169

f �0.k/ D x: (26)

3.2. Function having a nondifferentiable point170

What happens if f .x/ has one or more nondifferentiable points? Figure 3 shows a171

particular example of a function f .x/ which is nondifferentiable at xc . What does its LF172

transform f �.k/ look like?173

The answer is provided by what we have learned about supporting lines. Let us174

consider the differentiable and nondifferentiable parts of f .x/ separately:175
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Figure 3: Function having a nondifferentiable point; its LF transform is affine.

� Differentiable points of f : Each point .x; f .x// on the differentiable branches of176

f .x/ admits a strict supporting line with slope f 0.x/ D k. From the results of177

the previous section, we then know that these points are transformed at the level178

of f �.k/ into points .k; f �.k// admitting supporting line of slopes f �0.k/ D x.179

For example, the differentiable branch of f .x/ on the left (branch a in Figure 3)180

is transformed into a differentiable branch of f �.k/ (branch a0) which extends181

over all k 2 .�1; kl �. This range of k-values arises because the slopes of the182

left-branch of f .x/ ranges from �1 to kl . Similarly, the differentiable branch183

of f .x/ on the right (branch b) is transformed into the right differentiable branch184

of f �.k/ (branch b0), which extends from kh to C1. (Note that, for the two185

differentiable branches, the LF transform reduces to the Legendre transform.)186

� Nondifferentiable point of f : The nondifferentiable point xc admits not one but187

infinitely many supporting lines with slopes in the range Œkl ; kh�. As a result, each188

point of f �.k/ with k 2 Œkl ; kh� must admit a supporting line with constant slope189

xc (branch c0). That is, f �.k/ must have a constant slope f �0.k/ D xc in the190

interval Œkl ; kh�. We say in this case that f �.k/ is affine or linear over .kl ; kh/.191

(The affinity interval is always the open version of the interval over which f � has192

constant slope.)193

The case of functions having more than one nondifferentiable point is treated similarly194

by considering each nondifferentiable point separately.195

3.3. Affine function196

Since f .x/ in the previous example is convex, f .x/ D f ��.x/ for all x, and so the roles197

of f and f � can be inverted to obtain the following: a convex function f .x/ having an198
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Figure 4: Nondifferentiable points are transformed into affine parts under the action of
the LF transform and vice versa.

affine part has a LF transform f �.k/ having one nondifferentiable point; see Figure 4.199

More precisely, if f .x/ is affine over .xl ; xh/ with slope kc in that interval, then f �.k/200

will have a nondifferentiable point at kc with left- and right-derivatives at kc given by xl201

and xh, respectively.202

3.4. Bounded-domain function with infinite slopes at boundaries203

Consider the function f .x/ shown in Figure 5. This function has the particularity to be204

defined only on a bounded domain of x-values, which we denote by Œxl ; xh�. Furthermore,205

f 0.x/!1 as x ! xl C 0 and x ! xh � 0 (the derivative of f blows up near at the206

boundaries). Outside the interval of definition of f .x/, we formally set f .x/ D1.207

To determine the shape of f �.k/, we use again what we know about supporting lines208

of f and f �. All points .x; f .x// with x 2 .xl ; xh/ admit a strict supporting line with209

slope k.x/. These points are represented at the level of f � by points .k.x/; f �.k.x///210

having a supporting line of slope x. As x approaches xl from the right, the slope of f .x/211

diverges to �1. At the level of f �, this implies that the slope of the supporting line of212

f � reaches xl as k ! �1. Similarly, since the slope of f .x/ goes toC1 as x ! xh,213

the slope of the supporting line of f � reaches the value xh as k !C1; see Figure 5.214

Note, finally, that f D f �� since f is convex. This means that we can invert the215

roles of f and f � in this example just like in the previous one to obtain the following:216

the LF transform of a convex function which is asymptotically linear is a convex function217

which is finite on a bounded domain with diverging slopes at the boundaries.218

3.5. Bounded-domain function with finite slopes at boundaries219

Consider now a variation of the previous example. Rather than having diverging slopes220

at the boundaries xl and xh, we assume that f .x/ has finite slopes at these points. We221

denote the right-derivative of f at xl by kl and its left-derivative at xh by kh.222

For this example, everything works as in the previous example except that we have223

to be careful about the boundary points. As in the case of nondifferentiable points, f at224
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Figure 5: Function defined on a bounded domain with diverging slopes at boundaries; its
LF transform is asymptotically linear as jkj ! ˙1.

Figure 6: Function defined on a bounded domain with finite slopes at boundaries; its LF
transform has affine parts outside some interior domain.

xh admits not one but infinitely many supporting lines with slopes taking values in the225

range Œkh;1/. At the level of f �, this means that all points .k; f �.k// with k 2 Œkh;1/226

have supporting lines with constant slope xh; that is, f �.k/ is affine past kh with slope227

xh. Likewise, f at xl admits an infinite number of supporting lines with slopes now228

ranging from �1 to kl . As a consequence, f � must be affine over the range .�1; kl/229

with constant slope xl ; see Figure 6.230

3.6. Nonconvex function231

Our last example is quite interesting, as it illustrates the precise case for which the LF232

transform is not involutive, namely nonconvex functions.233

The function that we consider is shown in Figure 7; it has three branches having the234

following properties:235

� Branch a: The points on this branch, which extends from x D �1 to xl , admit236

strict supporting lines. This branch is thus transformed into a differentiable branch237
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Figure 7: Nonconvex function; its LF transform has a nondifferentiable point.

at the level of f � (branch a0).238

� Branch b: Similarly as for branch a.239

� Branch c: None of the points on this branch, which extends from .xl ; xh/, admit240

supporting lines. This means that these points are not represented at the level of f �.241

In other words, there is not one point of f � which admits a supporting line with242

slope in the range .xl ; xh/. (That would contradict the fact that f � has a supporting243

line at k with slope x if and only if f admits a supporting line at x with slope k.)244

These three observations have two important consequences (see Figure 7):245

1. f �.k/ must have a nondifferentiable point at kc , with kc equal to the slope of246

the supporting line connecting the two points .xl ; f .xl// and .xh; f .xh//. This247

follows since xl and xh share the same supporting line of slope kc . Thus, in a way,248

f � must have two slopes at kc .249

2. Define the convex extrapolation of f .x/ to be the function obtained by replacing250

the nonconvex branch of f .x/ (branch c) by the supporting line connecting the251

two convex branches of f (a and b). Then, both the LF transforms of f and252

its convex extrapolation yield f �. This is evident from our previous working of253

nondifferentiable and affine functions. It should also be evident from the example254

of nondifferentiable functions that the convex extrapolation of f is nothing but255

f ��, the double LF transform of f . This explains why we call f �� the convex256

envelope of f .257

To summarize, note that, as a result of Point 2 above, we have258

.f ��/� D .f /� D f �: (27)
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Figure 8: Structure of the LF transform for nonconvex functions.

Also, for the example considered, we have259

.f �/� D f �� ¤ f: (28)

Overall, this means that the LF transform has the following structure:260

f ! f �• f ��; (29)

where the arrows stand for the LF transform; see Figure 8. This diagram clearly shows261

that the LF transform is non-involutive in general. For convex functions, i.e., functions262

admitting supporting lines everywhere, the diagram reduces to263

f • f �: (30)

That is, in this case, the LF transform is involutive (see Theorem 6).264

4. Important results to remember265

� The LF transform yields only convex functions: f � D .f /� is convex and so is266

f �� D .f �/�.267

� The shape of f � is determined from the shape of f by using the duality relationship268

which exists between the supporting lines of f � and those of f .269

– Points of f are transformed into slopes of f �, and slopes of f are transformed270

into points of f �.271

– Nondifferentiable points of f are transformed, through the action of the LF272

transform, into affine branches of f �.273

– Affine or nonconvex branches of f are transformed into nondifferentiable274

points of f �. These are the only two cases producing nondifferentiable points.275
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� The involution (self-inverse) property of the LF transform is determined from the276

supporting line properties of f or from the differentiability properties of f �.277

– f D f �� at x if and only if f admits a supporting line at x.278

– If f � is differentiable at k, then f D f �� at x D f �0.k/.279

� The double LF transform f �� of f corresponds to the convex envelope of f .280

� The complete structure of the LF transform for general functions goes as follows:281

f ! f �• f ��; (31)

where the arrows denote the LF transform. For convex functions (f D f ��), this282

reduces to283

f • f �I (32)

i.e., in this case, the LF transform is involutive.284

� The LF transform is more general that the Legendre transform because it applies to285

nonconvex functions as well as nondifferentiable functions.286

� The LF transform reduces to the Legendre transform in the case of convex, differ-287

entiable functions.288
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