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Long-term forecasting of river runoff is important for climate scientists and hydrologists. By analysing the processes 

of a river basin characterized by measurable variables, an empirical data-driven model can be constructed. The 

support vector regression technique is used in this study to analyse historical stream flow occurrences and predict 

stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of 

determination and root-mean-square error are used for accuracy assessment. Compared to previous studies, 

satisfactory results are obtained. Inclusion of environmental aspects such as precipitation and evaporation are 

suggested for more accurate predictions. 
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1. Introduction 1 
 2 
Research on model-generated river runoff is essential 3 
for climate scientists and hydrologists to predict and 4 
understand future changes in river runoff that may be 5 
associated with global climate change. The 6 
hydrologic cycle is closed by returning the correct 7 
amount of water to the river mouth with the 8 
appropriate timing and position (Miller et al., 1993). 9 
River engineers and scientists use these results for the 10 
study of various hydro-environmental aspects, such 11 
as the increasing international concern of riverine 12 
pollution problems and the growing flood levels of 13 
rivers (Falconer et al., 2005). Furthermore, sediment 14 
transport and salinity changes within the river basin 15 
can be examined and predicted (Falconer et al., 2005; 16 
Miller et al., 1993). 17 
 18 
Numerous hydrological models have been 19 
implemented by researchers to analyse the behaviour 20 
of river basins and to model river flow in such basins 21 
by mapping the natural phenomena to a simulation 22 
program (Falconer et al., 2005). These models are 23 
known as physically based or process models, since 24 
they are based on the physical behaviour of the 25 
specific river basin system as well as the 26 
mathematical description of the river flow (Falconer 27 
et al., 2005; Solomatine and Ostfeld, 2008). A 28 
physically based model consists of a numerical 29 
process which involves the computation of an 30 
efficient and accurate solution to equations based on 31 
the physical laws obtained for the specific system. 32 
The accuracy of a process model is tested by 33 
comparing its results to past observations, and if a 34 
desired accuracy is obtained, such a model may be 35 

used to calculate and predict future changes in the 36 
particular system. 37 
 38 
Even though various hydraulic and hydrologic 39 
process models have been constructed for river basin 40 
systems, limited knowledge of the required modelling 41 
processes in a system may result in an unreliable 42 
model. However, such a system may consist of a 43 
process characterized by measurable variables and 44 
contain a sufficient amount of concurrent input and 45 
output data associated with the particular process 46 
(Solomatine and Ostfeld, 2008). By analysing the 47 
relationship between the input and output data an 48 
empirical mathematical model, known as a data-49 
driven model, can be constructed to model and 50 
predict future output variables (Solomatine and 51 
Ostfeld, 2008). 52 
 53 
A detailed understanding of the physical processes 54 
and behaviour of a river basin system is therefore not 55 
required for the construction of a data-driven model. 56 
Instead, data-driven modelling involves a study of the 57 
relationship between the system's state variables 58 
(Solomatine et al., 2008). This may allow for the 59 
improvement of physically based models.  60 
 61 
The objective of this study is the description and 62 
implementation of an empirically based (data-driven) 63 
model for river runoff. In particular, a supervised 64 
machine learning model known as support vector 65 
regression (SVR) will be considered. This model is 66 
used to analyse the stream flow history of gauging 67 
stations in a river basin in order to determine future 68 
stream flow. The Amazon River in South America is 69 
considered for the application of this data-driven 70 

mailto:mdutoit2@csir.co.za


2 
 

model and an attempt to accurately predict stream 71 
flow is made. 72 
 73 
2. Instrumentation and Method 74 
 75 
2.1. Study area and available data 76 
 77 
Stream flow data for the Amazon basin have been 78 
obtained from the Observation Service for the 79 
geodynamical, hydrological and biogeochemical 80 
control of erosion/alteration and material transport 81 
(SO HYBAM). This association manages 20 gauging 82 
stations that are distributed in the Amazon. The 83 
stream flow records of three are considered for this 84 
study: the Obidos station in Rio Amazonas, the 85 
Manacapuru station in Rio Solimões, and the Lábrea 86 
station in Rio Purus, shown in Fig. 1. 87 
 88 

 89 
Figure 1. Study area and location of the gauging stations. 90 
 91 
2.2. Support vector regression: model formulation 92 
 93 
In order to forecast an outcome 𝑦(𝑡 + ∆𝑡) at an 94 
instant ∆𝑡 from current time 𝑡, a regression method 95 
can be constructed. The purpose of such a method is 96 
to formulate a function 𝑓(𝒙) such that 𝑓(𝒙) =97 
𝑦(𝑡 + ∆𝑡). The function 𝑓 takes an input vector 98 
𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝑚) of 𝑚 known variables, including 99 
current and past data records [𝑦(𝑡), 𝑦(𝑡 − 1), … ,100 
𝑦(𝑡 − 𝑞)], where 𝑞 ≤ 𝑚. The input vector may also 101 
consist of any other available numerical variables. 102 
 103 
An extension of the support vector machine (SVM), 104 
formulated by Cortes and Vapnik (1995), is known as 105 
the support vector regression (SVR) technique. A 106 
thorough description on the construction of the SVR 107 
technique, its optimization parameters (𝐶 and 𝜖) and 108 
its applications in the field of hydrology can be found 109 
in Raghavendra and Deka (2014). An important 110 
concept of the SVR method is that it attempts to find 111 
a simple function that can fit all the data while 112 
minimizing the sum of prediction errors above a 113 
predefined margin (Callegari et al., 2015). 114 
 115 
For cases where the SVR model has to optimize 116 
nonlinear functions, the input vector 𝒙 is mapped to a 117 

feature space where its relationship with 𝑦 is 118 
linearized. This mapping function is known as a 119 
kernel function. A detailed discussion on kernel 120 
functions is given by Raghavendra and Deka (2014). 121 
 122 
2.3. Model training and testing 123 
 124 
The process of formulating a function 𝑓(𝒙) on a 125 
given subset of the available data (known as the 126 
training set) is known as training. During training, 127 
the model is tested by fitting it to a second sample set 128 
(known as the validation set). Finally, the trained 129 
SVR model is verified by an accuracy measurement 130 
on a third subset of the given samples, known as the 131 
test set (Solomatine and Ostfeld, 2008). 132 
 133 
For the Obidos gauging station, monthly stream flow 134 
data from 1970 to 2000 are considered. Furthermore, 135 
data from 1973 to 2003 and from 1968 to 1998 are 136 
available for the Manacapuru and Lábrea stations, 137 
respectively. For each station, data for the first 15 138 
years are used as training sets. The following 10 139 
years' data constitutes the validation set and the 140 
remaining 5 years' data are used for testing. 141 
 142 
2.4. Feature and kernel function selection 143 
 144 
Each input vector 𝒙 consists of 12 antecedent stream 145 
flow periods (months). The value of 𝑦 represents the 146 
flow in the next period. One month predictions are 147 
made, where after forecasting is extended for up to 148 
12 months. Evaluation is done by calculating the 149 
coefficient of determination (𝑅2) of the predicted and 150 
observed stream flow values. The purpose of 𝑅2 is to 151 
give an estimation of how well observed models are 152 
replicated by the fitted model, based on the 153 
percentage of total variation of outcomes interpreted 154 
by the model. The 𝑅2 percentage therefore represents 155 
the percentage of variation of predicted outcomes that 156 
are explained by the fitted model. Furthermore, the 157 
root-mean-square error (RMSE) percentage indicates 158 
residual variance between observed and forecasted 159 
outcomes, and will be used for evaluation in this 160 
study. 161 
 162 
Linear, Polynomial (Poly) and Radial Basis (RBF) 163 
kernel functions are considered. These SVR 164 
formulations are expressed as follows: 165 
 166 
Linear:   𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖

𝑇𝑥𝑗 , 167 

Poly:   𝑘(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, and 168 

RBF:   𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) ;   𝛾 > 0. 169 

 170 
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The mapping of features 𝑥𝑖 and 𝑥𝑗 to the feature 171 
space is represented by 𝑘(𝑥𝑖 , 𝑥𝑗). An outline of the 172 
kernel functions and their hyperparameters are given 173 
by Granata et al. (2016). A built-in module in the 174 
Python programming language, known as Optunity, 175 
is used to optimize the parameters of each kernel. 176 
 177 
3. Results and Discussion 178 
 179 
3.1. Optimal hyperparameters and kernel functions 180 
 181 
Historical stream flow records of the respective 182 
stations are examined. For each station, the optimal 183 
hyperparameters of the considered kernel functions 184 
are calculated in order to determine the best 185 
generalized model for the given data. The 𝑅2 value 186 
for each optimized model is listed in Tables 1 to 3. 187 
For the training and validation sets, every kernel 188 
function provides an 𝑅2 greater than 0.9, indicating 189 
that at least 90% of the total variation of predicted 190 
outcomes are explained by the fitted models. The 191 
RBF and polynomial kernel functions provide the 192 
best results for each station. However, the RBF 193 
kernel is less complex in comparison to polynomial 194 
kernels, since it contains fewer parameters. Further 195 
investigation is therefore done by only considering 196 
the RBF kernel. 197 
 198 
  199 
Table 1. Optimized kernel-specific hyperparameters and 𝑅2 for 200 
one month predictions of river flow at the Obidos gauging station. 201 

OBIDOS GAUGING STATION 

 Optimal Parameters 𝑅2  
Kernel 𝐶 𝜖 

 

𝛾 𝑑 𝑟 Training 

set 

Validation 

set 

RBF 641 0.0303 0.067 - - 0.983 0.967 

Linear 304 0.0262 - - - 0.976 0.965 

Poly 381 0.0307 0.1 2 0.3 0.981 0.966 

 202 
Table 2. Optimized kernel-specific hyperparameters and 𝑅2 for 203 
one month predictions of river flow at the Manacapuru gauging 204 
station. 205 

MANACAPURU GAUGING STATION 

 Optimal Parameters 𝑅2 

Kernel 𝐶 𝜖 𝛾 𝑑 𝑟 Training 

set 

Validation 

set 

RBF 570 0.02 0.03 - - 0.937 0.923 

Linear 385 0.048 - - - 0.912 0.904 

Poly 78 0.0056 0.1 3 0.5 0.942 0.925 

 206 
Table 3. Optimized kernel-specific hyperparameters and 𝑅2 for 207 
one month predictions of river flow at the Lábrea gauging station. 208 

LABREA GAUGING STATION 

 Optimal Parameters 𝑅2 

Kernel 𝐶 𝜖 𝛾 𝑑 𝑟 Training 

set 

Validation 

set 

RBF 255 0.05 1.7 - - 0.985 0.965 

Linear 84 0.015 - - - 0.956 0.951 

Poly 675 0.0329 0.1 5 0.11 0.984 0.959 

 209 
 210 

3.2. Extended stream flow forecasting 211 
 212 
The optimized RBF models are applied to the testing 213 
data for forecasting. At an instant (month) 𝑡, twelve 214 
antecedent observed flow values 𝒙 = [𝑦(𝑡), 𝑦(𝑡 − 1),215 
… , 𝑦(𝑡 − 11)]  are used to predict flow 𝑓(𝒙){𝑡+1} 216 
for month 𝑡 + 1. This is known as one month 217 
forecasting. Similarly, for two month forecasting, an 218 
input vector 𝒙 =  [𝑓(𝒙){𝑡+1}, 𝑦(𝑡), … , 𝑦(𝑡 − 10)] is 219 
used to predict stream flow for month 𝑡 + 2. 220 
Forecasting extending up to 12 months is done on the 221 
given test set of each station. The corresponding 𝑅2 222 
values and 𝑅𝑀𝑆𝐸  percentages are determined and 223 
shown in Figs. 2 and 3, respectively. 224 
 225 
For each gauging station the best results were 226 
obtained for one month forecasting. An 𝑅2 of 0.973 227 
is obtained for the Obidos station, whereas 𝑅2 values 228 
of 0.94 and 0.95 are obtained for the Manacapuru and 229 
Lábrea stations, respectively. Furthermore, the RMSE 230 
percentages are obtained respectively as 5.06%, 231 
6.49% and 21.38%. 𝑅2 is a relative error of fit, 232 
whereas 𝑅𝑀𝑆𝐸 is an absolute measure of fit. Since 233 
𝑅𝑀𝑆𝐸 is the square root of a variance, it can be 234 
explained as the standard deviation of the 235 
unexplained variance. This clarifies the larger 𝑅𝑀𝑆𝐸 236 
values obtained for the Lábrea station. Compared to 237 
stream flow forecasting studies done by Veiga et al. 238 
(2015), Lin et al. (2006) and Callegari et al. (2015), 239 
these results are quite satisfactory. 240 
 241 
Extended forecasting produces less accurate results. 242 
However, it should be taken into account that 243 
predicted stream flow values were used to make 244 
future predictions. Also, stream flow is the only 245 
environmental/hydrological variable considered. 246 
 247 

 248 
Figure 2. 𝑅2 results for extended forecasting. 249 
 250 
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 251 
Figure 3. 𝑅𝑀𝑆𝐸 percentages for extended forecasting. 252 
 253 
3.3. Illustrations of stream flow predictions 254 
 255 
Figure 4 is an illustration of one, six and twelve 256 
month extended stream flow forecasting compared to 257 
observed stream flow. The worst predictions are 258 
made at the minimum and maximum stream flow 259 
occurrences, whereas good results are obtained for 260 
the upward and downward flow tendencies. 261 
 262 

 263 
Figure 4: Stream flow discharge at the Obidos station for 1, 6, and 264 
12 month predictions. 265 
 266 
4. Conclusions 267 
 268 
Research on long-term forecasting of river runoff 269 
predictions is important for climate scientists and 270 
hydrologists, since these results are used for the study 271 
of various hydro-environmental aspects. Numerous 272 
physically based hydrologic models have been 273 
implemented by researchers for this task, but due to 274 
limited knowledge of the necessary modelling 275 
processes in a river basin, inaccurate results have 276 
been obtained. Therefore, by analysing the processes 277 
of a river basin characterized by measurable 278 
variables, an empirical data-driven model can be 279 
constructed. The support vector regression (SVR) 280 
machine learning technique was used in this study to 281 
analyse historical stream flow occurrences in order to 282 

predict stream flow values. Predictions for up to 283 
twelve months were made and the coefficient of 284 
determination as well as the root-mean-square error 285 
were used as accuracy measurements. Satisfactory 286 
results were obtained and local stream flow data 287 
proved to be a trustworthy hydrological factor when 288 
predicting a specific river’s stream flow. Even though 289 
the effects of precipitation may already be present in 290 
stream flow data, an understanding of the relationship 291 
between stream flow and precipitation may lead to a 292 
more accurate prediction of stream flow. Explicitly 293 
including precipitation and other environmental 294 
aspects such as temperature and evaporation when 295 
building an SVR model will therefore be addressed in 296 
further studies. 297 
 298 
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