
Jacobian Norm Regularisation and Conditioning
in Neural ODEs⋆

Shane Josias1,2 and Willie Brink1

1Applied Mathematics, Stellenbosch University
2School for Data Science and Computational Thinking, Stellenbosch University

{josias,wbrink}@sun.ac.za

Abstract. A recent line of work regularises the dynamics of neural or-
dinary differential equations (neural ODEs), in order to reduce the num-
ber of function evaluations needed by a numerical ODE solver during
training. For instance, in the context of continuous normalising flows,
the Frobenius norm of Jacobian matrices are regularised under the hy-
pothesis that complex dynamics relate to an ill-conditioned ODE and
require more function evaluations from the solver. Regularising the Ja-
cobian norm also relates to sensitivity analysis in the broader neural
network literature, where it is believed that regularised models should
be more robust to random and adversarial perturbations in their input.
We investigate the conditioning of neural ODEs under different Jacobian
regularisation strategies, in a binary classification setting. Regularising
the Jacobian norm indeed reduces the number of function evaluations re-
quired, but at a cost to generalisation. Moreover, naively regularising the
Jacobian norm can make the ODE system more ill-conditioned, contrary
to what is believed in the literature. As an alternative, we regularise the
condition number of the Jacobian and observe a lower number of function
evaluations without a significant decrease in generalisation performance.
We also find that Jacobian regularisation does not guarantee adversarial
robustness, but it can lead to larger margin classifiers.
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1 Introduction

Neural ordinary differential equations (neural ODEs) [4] are a class of implicit
deep learning layers, or continuous-depth models, in which the solution procedure
(i.e. the forward pass) is separated from the definition of the layers (the neural
network). This separation allows for flexibility in controlling the error of the
solution procedure to trade-off against accuracy, and the use of adaptive solvers
and correctors for ODE systems that are difficult to solve. Through the use
of the adjoint method for gradient calculations, neural ODEs become memory
efficient with a cost that grows constant in the number of layers, but sacrifices
⋆ This work is based on research supported by the National Research Foundation of

South Africa (grant number 138341).
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on computational complexity since the forward and reverse trajectories for a
given point must be re-evaluated [4]. Mitigating the computational complexity
inherent in neural ODEs can make them more tractable for larger datasets and
a wider variety of modelling problems [9].

Neural ODEs define a continuous transformation on the data where the for-
ward pass through the ODE is represented by an integral. The computational
complexity of a neural ODE is represented by the number of function evaluations
(NFE) required by the ODE solver to determine the solution trajectory [7, 9, 15].
For a mini-batch of data considered during training, NFE describes the number
of times points along a solution trajectory are passed through the neural net-
work. During training, the dynamics of the data transformation process become
increasingly complex such that the solver must take finer steps to determine a
solution [7]. Figure 1 shows how the NFE increases during the training of an
unregularised neural ODE on a dataset (details of this experiment will follow
in Section 3). It is believed that the complexity of the dynamics is related to
the conditioning of the ODE system [7, 9]. Simpler dynamics on the other hand,
and a lower NFE, encourage faster convergence for neural ODEs and make them
more practically feasible [9, 15]. However, it is not clear whether generalisation
and robustness of the solution are maintained under simplified dynamics, or
whether there is a trade-off.
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Fig. 1. As the loss is minimised during the training of an unregularised neural ODE on
a 2-dimensional dataset (left), the number of function evaluations (NFE) required by
the ODE solver increases (right). Here the solver requires on average about 34 function
evaluations per batch. For continuous normalising flows on CIFAR-10, the NFE can go
up to about 1400 [9].

Following Finlay et al. [9], we are interested in encouraging simple dynamics
through regularising the Jacobian of a neural ODE, in classification problems
instead of the normalising flows context. The Jacobian is evaluated at the input
data, serving as initial conditions for the neural ODE. The focus on Jacobian
regularisation provides a link to sensitivity analysis found in the conventional
neural network literature [11, 13, 14, 23, 26] where both Frobenius and spectral
norm regularisation have been employed. Conventional neural networks define an
explicit data transformation, and the Jacobian represents the change in output
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with respect to changes in the input data. The Jacobian of a neural ODE, on the
other hand, gives an indication of how the vector field describing the data flow
changes with respect to changes in initial conditions. In this paper we borrow
sensitivity analysis tools from the neural network literature, such as perturba-
tion analysis and distance to decision boundaries, in order to evaluate Jacobian
regularisation strategies in the training of neural ODEs. Our contributions can
be summarised as follows.

1. We empirically investigate the effect of simplified dynamics on generalisation,
adversarial vulnerability, and conditioning through Jacobian regularisation,
with a view towards making neural ODE training more practical without
sacrificing performance.

2. We show that regularising the Jacobian norm can make the ODE system
more ill-conditioned, contrary to what is suggested in the literature [9], and
while it reduces the NFE, it does so at the cost of test accuracy.

3. We show that regularising the condition number of the Jacobian reduces the
NFE without sacrificing test accuracy.

4. Finally, we show that Jacobian norm regularisation can increase distance
to the decision boundary for correctly classified data points, but does not
guarantee robustness against adversarial perturbations.

Section 2 provides background on neural ODEs and the regularisation meth-
ods we investigate. Section 3 describes experiment methodology, and Section 4
discusses results on a running example. Section 5 extends the experiments to
additional datasets for verification. Section 6 relates existing literature to this
study, and Section 7 provides conclusions and ideas for future work.

2 Background and definitions

Neural ODEs specify the dynamics of a continuous data transformation pro-
cess by parameterising the ODE vector field with a neural network. Suppose
that fθ is a neural network with parameter set θ, and h(t) the transformed data
at time t, for t ∈ [t0, t1]. The neural ODE is then defined as

dh(t)

dt
= fθ(h(t), t), (1)

with an initial condition h(t0) represented by the input data. We are interested
in a solution h(t1) at some time t1, with (t0, t1) normally chosen as (0, 1) in
the literature [4, 7, 12]. The solution itself is unique provided that the neural
network is Lipschitz continuous, due to Picard’s existence theorem [5]. Linear
and convolutional layers, and nonlinearities such as ReLU and tanh satisfy this
property. The forward pass of the data is determined by integration:

h(t1) = h(t0) +

∫ t1

t0

fθ(h(t), t) dt. (2)
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Fig. 2. The vector field defined by a neural ODE and the effect on a 2-dimensional
dataset. The network in this neural ODE was trained to linearly separate the two
classes shown on the left, leading to dynamics described by an unstable spiral fixed
point in the vector field (middle). The colours in the vector field plot represent vector
magnitude.

The initial condition h(t0) and solution at t1, h(t1), define the input and output
of the neural ODE, both of which having the same dimension as the input data.
The network fθ itself defines the gradient (vector field) of the solution trajectory
at any given point in space. A loss function L to be optimised accepts the solution
determined by a standard numerical ODE solver:

L (h(t1)) = L
(
h(t0) +

∫ t1

t0

fθ(h(t), t) dt

)
= L (ODESolve(h(t0), fθ, t0, t1)) .

(3)

While it is possible to backpropagate through the operations of the ODE solver,
such a strategy incurs a high memory cost and introduces additional numerical
error [4] as the computational graph can become quite large. Instead, it is pre-
ferred to compute ∂L

∂θ by the adjoint sensitivity method, which considers ∂L
∂h(t) ,

∂fθ
∂θ and ∂fθ

∂h(t) . These quantities can be computed efficiently and the integrals for
constructing the forward and reverse trajectories can be found through standard
ODE solvers. This approach scales more efficiently, has a low memory cost and
explicitly controls numerical error [4].

Figure 2 provides an example of how a neural ODE trained jointly with a
linear classifier at the end transforms input data at time t0 to become linearly
separable at time t1.

NFE represents the number of times points along a solution trajectory are
passed through the network fθ that defines a neural ODE. An ODE solver that
makes finer discretisations will require a higher NFE, and indicates more complex
dynamics. In our experiments, NFEs will be averaged across the batches of an
epoch, with batch size kept constant across regularisation methods. Investigating
the impact of batch size on NFE is left for future work.
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Jacobian regularisation is motivated by the fact that during training, NFE
and the Frobenius norm of Jacobian matrices both increase [9]. The Jacobian
J ∈ Rd×d we consider is that of the neural network defining the vector field,
with respect to the input data:

J = ∇h(t0)fθ(h(t), t). (4)

We will experiment with regularising the Frobenius norm ∥J∥F , the spectral
norm ∥J∥2, and the condition number κ(J). These are defined as

∥J∥F =

√√√√ d∑
i=1

d∑
j=1

|J i,j |2, ∥J∥2 = σmax(J), κ(J) =
σmax(J)

σmin(J)
, (5)

where σmax and σmin refer to the largest and smallest singular values of a matrix.
Regularising κ(J) serves as a preliminary investigation into the claim that NFE
increases due to ill-conditioning of the ODE [7, 9].

For the purposes of regularisation, we will evaluate the Jacobian at the initial
conditions (the input data). Thus, we make an assumption that regularising
dynamics at the initial conditions can lead to regularised dynamics across the
entire trajectory. Regularising ∥J∥2 controls the rate at which the input space
is stretched along the first principal axis. Regularising ∥J∥F effectively scales
the Jacobian matrix, and should induce the same effect as controlling ∥J∥2, as
is also apparent from the fact that ∥J∥2 ≤ ∥J∥F . Exploring means of explicitly
regularising dynamics across the entire solution trajectory is left for future work.

3 Methodology

We consider a supervised classification setting, where given a neural ODE defined
by fθ we aim to find parameters θ such that a linear classifier gϕ built on the
solution of the ODE can associate an output h(t1) with a one-hot encoded label
y. Given a labelled training set D = {(xi, yi)}Ni=1 with xi ∈ Rd, and letting
hi(t0) = xi, we construct the classifier gϕ to accept solutions hi(t1) of a neural
ODE system and to output confidence scores over labels. For a sample (x, y) ∈ D,
we denote the cross-entropy loss of gϕ as Lbase(gϕ(x), y) and construct additional
loss functions with Jacobian regularisation terms as follows:

L∗(x, y) = Lbase(gϕ(x), y) + λn∥J(x)∥∗, (6)

Lcond(x, y) = Lbase(gϕ(x), y) + λc∥κ (J(x))− 1∥2. (7)

We set λn = 1 and λc =
1
2 in later experiments, and add 10−6 to the denominator

of κ (J) to avoid underflow in the early stages of training. The total loss to be
minimised is then computed as the average over samples in a mini-batch.

The neural ODE is implemented using the torchdiffeq framework [3]. The
neural ODE and linear classifier are trained jointly, end-to-end. The addition of
a linear classifier encourages the neural ODE vector field to linearly separate the
classes. Training is done for 300 epochs, and repeated for 10 random seeds to
determine stability across runs.
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Fig. 3. The intertwining
moons dataset (red and
blue indicate class labels).

In high dimensions, direct computation of the Ja-
cobian becomes computationally expensive. For now,
as a test-bed for our hypotheses, the 2-dimensional
intertwining moons dataset shown in Figure 3 is used
as a running example. Other datasets are considered
in Section 5, and more efficient methods to scale to
higher dimensions will be mentioned in Section 7.

We are interested in the relationships between
NFE as defined in Section 2, generalisation perfor-
mance, and the sensitivity of a trained model’s out-
put under perturbations. The remainder of this sec-
tion discusses the metrics used in our experiments.

Generalisation and sensitivity are investigated by means of performance
on a hold-out test set, as well as input perturbations. The input perturbations
include varying levels of Gaussian noise, and adversarial perturbations created
by the fast gradient sign method [10]:

xp = x+ ϵ sign (∇xL(x, y)) , (8)

where ϵ is varied to increase the severity of the adversarial attack. This kind of
perturbation moves a test sample x in a direction that increases the value of
L(x, y), such that it is more likely for a trained model to predict an incorrect
class label. Standard test set performance corresponds to ϵ = 0.

Jacobian norms and condition numbers are averaged over all data points
for each epoch. Keeping track of the norms and condition numbers can aid in
determining the effect of each regularisation strategy. For instance, we will show
in Section 4 that regularising the Frobenius and spectral norm of the Jacobian
can make the ODE system more ill-conditioned.

Distance to decision boundary is a common metric in neural network sen-
sitivity analysis, with the hypothesis that larger distances correspond to a more
robust model. To determine the distance to a decision boundary, we generate
points on d-dimensional spheres uniformly at random. The spheres are centered
at a data point, with increasing radii. We perform a linear search over the spheres
to determine the largest radius for which points are still labelled consistently.
This can be made more efficient using a binary search algorithm.

4 Results

4.1 Generalisation and sensitivity

Regularising ∥J∥F and ∥J∥2 more than halves the NFE during training, as
shown in Figure 4. However, Figure 5 shows a reduced test accuracy at ϵ = 0
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(no perturbations), revealing that complex dynamics might be a prerequisite
for linearly separable representations of the input data. The steeper slope for
Jacobian norm regularisation in Figure 5 suggests that norm regularisation leads
to classifiers that are more vulnerable to adversarial perturbations than the
other regularisation strategies, for small values of ϵ. Even though Jacobian norm
regularisation does not lead to adversarially robust classifiers, they do provide
models that are more stable across runs, as is evident from the lower standard
deviations in Figures 4 and 5. On the contrary, Figure 6 shows a slower decline
in performance under random (Gaussian) perturbations. This could relate to
our observation that Jacobian norm regularisation leads to larger classification
margins (as detailed in Section 4.3). The effect of random noise perturbation is
mitigated by a larger margin, since those perturbations are less likely to cross
decision boundaries. Adversarial perturbations specifically move the input data
in a direction that will lead to a miss-classification.
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Fig. 4. Regularising the Jacobian norm (both Frobenius and spectral) and condition
number controls the NFE required by the ODE solver during training. The baseline
trains with no regularisation. Solid curves and shaded regions indicate mean and stan-
dard deviation over 10 runs.
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Regularising the condition number to be closer to 1 also reduces the NFE,
though not as significantly as Jacobian norm regularisation. On the other hand,
condition number regularisation achieves a reduced NFE at virtually no cost
to test accuracy. Training converges more stably when compared to the base-
line (no regularisation). Interestingly, the baseline remains the least sensitive to
adversarial perturbations. It is possible that the degree of complexity for un-
regularised dynamics in two dimensions is higher than the impact of adversarial
perturbations, especially considering that the data coverage here is fairly dense.

4.2 Jacobian norms and condition numbers

Table 1 shows that while Jacobian norm regularisation reduces the NFE, the
condition number of the Jacobian increases compared to both the baseline and
Jacobian conditioning regularisation. That is, Jacobian norm regularisation can
make the ODE more ill-conditioned. Moreover, the standard deviation on the
condition number is significantly higher for Jacobian norm regularisation. The
issue here is that both Jacobian norm regularisation strategies indiscriminately
push σmin to zero (Figure 7), driving the condition number to increase. In some
cases, σmin becomes so small that κ(J) increases drastically. In fact, an extreme
outlier for spectral norm regularisation on the order of 106 was omitted from
the results in Table 1. As singular values tend to zero, the Jacobian matrix
becomes closer to singular. It might be worth investigating the stiffness of neural
ODEs. In some cases, the condition number is related to the stiffness index
S = κ(J)(t1 − t0). Stiff ODEs are numerically unstable and often require very
small step sizes to solve, which may in turn increase the NFE, or even call for
the use of implicit solvers.

Table 1. Measures of NFE, test accuracy and Jacobian condition number, for the
different regularisation strategies investigated. The Jacobian condition number in the
last column is an average over the training data after the final epoch of training.

Intertwining moons
Regularisation NFE Test accuracy Condition number

None 34.98 ± 2.98 0.9975 ± 0.0008 5.31 ± 3.51
Frobenius 14.00 ± 0.00 0.8862 ± 0.0003 27.3 ± 34.1
Spectral 19.81 ± 5.76 0.8846 ± 0.0022 45.9 ± 70.6
Condition number 27.12 ± 1.94 0.9973 ± 0.0007 6.10 ± 5.22

Figure 7 shows that Jacobian condition number regularisation controls the
spectral norm to some extent. The two graphs also indicate that Jacobian con-
dition number regularisation effectively pushes κ(J) closer to 1.
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Fig. 7. Regularising the Jacobian condition number controls σmax (left) and σmin

(right).

4.3 Distance to decision boundary

Figure 8 shows average distance to decision boundaries, for different regularisa-
tion strategies. Jacobian condition number regularisation results in little change
from the baseline (no regularisation). Jacobian norm regularisation, on the other
hand, does increase the average distance to the decision boundary for correctly
classified points, and is consistent with prior work [14]. There seems to be a
trade-off between having a classifier with a large margin and sufficiently com-
plex dynamics for effective classification.
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Fig. 8. Box-and-whisker plot of distance to decision boundary for different regularisa-
tion strategies, over the training data points. Jacobian norm regularisation increases
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5 Additional datasets

To verify the findings of the previous section, we consider additional datasets of
varying complexity, as shown in Figure 9. We consider the spiral dataset as a
more challenging version of the intertwining moons dataset. Then, as a known
pathological case for neural ODEs, we consider the annulus dataset. For these
data points to become linearly separable, the inner circle must pass through
the outer circle. Since neural ODEs can only learn smooth homeomorphisms [7,
18], solution trajectories cannot cross. To lessen the challenge of the annulus,
we also consider the broken annulus dataset where part of the outer circle has
been removed, allowing a valid trajectory for points in the inner circle. We train
neural ODE classifiers for each of these three datasets, over 100 epochs. Finally,
we consider 5-dimensional latent representations of the 10-class MNIST dataset,
from a trained autoencoder. Neural ODE classifiers for the MNIST dataset are
trained over 25 epochs.

We again compare NFEs and test accuracy of an unregularised neural ODE
and ones trained with Jacobian norm and condition number regularisation.
Training of all models is repeated for 10 random seeds.

Fig. 9. Additional datasets used in our experiments: spiral (top left), annulus (top
middle), broken annulus (top right), and 5-dimensional autoencoder representations
of MNIST (here we show samples of original and reconstructed images in the bottom
row).

NFE, accuracy and condition numbers are reported in Table 2. The finding
that Jacobian condition number regularisation reduces NFE without a significant
cost to generalisation performance, is consistent for all datasets. Surprisingly,
Jacobian norm regularisation leads to test performance worse than random on
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Table 2. NFEs, test accuracies and condition number for regularisation strategies
investigated.

Spiral dataset
Regularisation NFE Test accuracy Condition number

None 40.27 ± 7.28 0.9978 ± 0.0030 20.6 ± 11.6
Frobenius 14.00 ± 0.00 0.7425 ± 0.0108 18.6 ± 13.7
Spectral 14.02 ± 0.06 0.7517 ± 0.0159 30.0 ± 20.0
Condition number 26.94 ± 11.3 0.8620 ± 0.1006 7.88 ± 5.88

Annulus
Regularisation NFE Test accuracy Condition number

None 38.08 ± 4.50 0.9528 ± 0.0251 23.2 ± 16.6
Frobenius 14.02 ± 0.06 0.6506 ± 0.0058 39.1 ± 38.7
Spectral 18.11 ± 10.8 0.6541 ± 0.0058 40.5 ± 58.8
Condition number 29.36 ± 3.18 0.9335 ± 0.0090 5.88 ± 5.53

Broken annulus
Regularisation NFE Test accuracy Condition number

None 34.40 ± 3.03 0.9965 ± 0.0032 11.7 ± 4.46
Frobenius 16.10 ± 4.66 0.4562 ± 0.1246 29.6 ± 43.7
Spectral 14.96 ± 1.90 0.3984 ± 0.1032 70.2 ± 61.9
Condition number 30.01 ± 3.96 0.9917 ± 0.0068 15.0 ± 29.7

5-dimensional MNIST
Regularisation NFE Test accuracy Condition number

None 29.59 ± 2.20 0.9522 ± 0.0012 2.47 ± 0.40
Condition number 19.19 ± 1.38 0.9364 ± 0.0011 1.54 ± 0.18

the broken annulus dataset. It is possible that Jacobian norm regularisation
asserts too strong an inductive bias on trajectories learnt by the neural ODE,
such that some types of dynamics are suppressed regardless of how simple a
dataset may be. For the MNIST dataset, which is higher in dimension and has
more classes, results remain consistent: Jacobian condition number regularisation
can reduce NFE without a significant cost to test accuracy.

In Figure 10, we report adversarial and Gaussian robustness for the addi-
tional 2-dimensional datasets. Again, the baseline seems to be most robust to
adversarial perturbations, except for the annulus and broken annulus datasets,
where there is not much difference between the baseline and condition num-
ber regularisation. The slower decline in accuracy under Gaussian perturbations
(spiral and annulus dataset) is again evident for Jacobian norm regularisation,
especially for the spiral dataset.
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Fig. 10. Accuracy as a function of adversarial perturbations (left), and accuracy as a
function of Gaussian perturbations (right), for the additional 2-dimensional datasets.

6 Related work

As mentioned earlier, neural ODEs can be regarded as continuous depth neu-
ral networks that are more memory efficient and separate the definition of the
model from the forward pass. Neural ODEs may also be suitable for mod-
elling continuous-time data from systems such as physical systems [20, 22, 25,
27], continuous-time time series [6, 16, 21] and continuous normalising flows [4,
8, 9, 17, 19]. Neural ODEs also appear in score-based generative modelling where
a stochastic differential equation is used to model the data generation process,
and have been shown to generate GAN-level quality samples without the need
for adversarial training (which can suffer from issues such as mode collapse) [24].
Song et al. [24] convert the stochastic differential equation into an ordinary dif-
ferential equation whose solution allows for the generation of samples.
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It is important to acknowledge that there are modelling disadvantages to
neural ODEs. In fact, neural ODEs are not universal function approximators:
they can only learn smooth homeomorphisms [7, 18] due to the fact that so-
lution trajectories cannot cross one another. Dupont et al. [7] circumvent this
by augmenting the dimensions of the ODE, akin to the kernel trick in SVMs.
Problems requiring complex dynamics and a high number of function evaluations
then become simpler to solve with lower NFEs, much like the aim of our work.
Yan et al. [12] suggest that the restriction of smooth homeomorphism can lead
to more robust models, and perform perturbation vulnerability experiments by
comparing neural ODEs with CNNs. Most related to our paper are the works of
Finlay et al. [9] who regularise the Frobenius norm of the Jacobian in the con-
text of normalising flows, and Kelly et al. [15] who encourage simpler dynamics
by introducing a differentiable proxy for the time cost of a numerical solver.
Bai et al. [2] observe increasing instability during the training of deep equilib-
rium models [1], a class of deep implicit layers where the solution procedure is
defined by a fixed point iteration. This instability leads to an increased NFE and
a higher likelihood of divergence from a fixed point, all of which are reduced by
regularising the Frobenius norm of the Jacobian at the fixed point.

There also exists works in the broader machine learning literature that reg-
ularise the Frobenius and spectral norm of a neural network’s weights or input-
output Jacobian, towards improving generalisation and robustness [11, 13, 14, 23,
26]. Similar to our paper, these works operate under the hypothesis that norm
regularisation can reduce sensitivity to perturbations in the input. Yoshida et
al. [26] provide an upper bound to the spectral norm of a neural network’s
weight matrices that allows for more efficient regularisation. Johansson et al.
[14] extend this by providing an exact method to compute the spectral norm of
a neural network’s input-output Jacobian, through a power iteration procedure.
Our findings on an increased distance to decision boundary for Frobenius and
spectral norm regularisation are consistent with those of Johansson et al. [14].
We further expect that their approach can be applied to neural ODEs, so that
our experiments can be scaled to higher dimensional datasets. Hoffman et al. [13]
provide an efficient computation for the Frobenius norm of a Jacobian through
random projections. Their method, however, is not applicable to spectral norms
or condition numbers, as those cannot be written in terms of a matrix trace
operation.

7 Conclusion

We investigated the required number of function evaluations (NFE) and condi-
tioning of a neural ODE system under different Jacobian regularisation strate-
gies. Our experiments show that while Jacobian norm regularisation is effective
at reducing the NFE of neural ODE solvers, they do so at the cost of test ac-
curacy and may make the Jacobian matrix ill-conditioned. Jacobian condition
number regularisation reduces NFE without a significant loss in accuracy, and
controls the norm and condition number of the Jacobian. We acknowledge that
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this study involved small datasets, and should be regarded as an initial ex-
ploration into neural ODE conditioning. Moreover, Jacobian condition number
regularisation adds a significant computational overhead to the training process
that might not be balanced by a reduced NFE. Future work will therefore in-
vestigate a more efficient computation of the condition number, similar to the
power iteration already attempted for convolutional neural networks [14, 26].
This will allow experiments to be scaled to higher dimensional datasets, such as
images, and may also allow for the regularisation of dynamics across the entire
solution trajectory [15]. Higher dimensional datasets are important to consider
given that the goal of reducing NFE through Jacobian regularisation is to make
neural ODEs more practically relevant. Another possible direction would be to
characterise the stiffness of the ODE at the solutions, as stiff ODEs often require
higher NFEs or an implicit solver.
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