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Abstract. Recent work in image captioning seems to be driven by in-
creasingly large amounts of training data, and requires considerable com-
puting power for training. We propose and investigate a number of ad-
justments to state-of-the-art approaches, with an aim to train a perfor-
mant image captioning model in under two hours on a single consumer-
level GPU using only a few thousand images. Firstly, we address the issue
of sparse object and scene representation in a small dataset by combin-
ing visual attention regions at various levels of granularity. Secondly,
we suppress semantically unlikely caption candidates through the intro-
duction of language model rescoring during inference. Thirdly, in order
to increase vocabulary and expressiveness, we propose an augmentation
of the set of training captions through the use of a paraphrase gener-
ator. State-of-the-art performance on the Flickr8k test set is achieved,
across a number of evaluation metrics. The proposed model also attains
competitive test scores compared to existing models trained on a much
larger dataset. The findings of this paper can inspire solutions to other
vision-and-language tasks where labelled data is scarce.
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1 Introduction

Image captioning is the task of creating a short natural language expression to
describe the visual content of a given image (as illustrated in Fig. 1). An image
captioning model should in concept learn to identify salient objects within an
image, determine relationships between different objects, form an understanding
of the image as a whole, and then generate a sensible and semantically correct
phrase. In order to generalise well, current state-of-the-art models require large
amounts of diverse training data (samples of image-caption pairs) as well as con-
siderable computing power for training. Oscar [1], for example, was pre-trained
on 6 million image-caption pairs, and fine-tuned on the Microsoft COCO dataset
[2] which has 328,000 images. Training this model required 22 days on eight Tesla
V100 GPUs, with VRAM usage peaking at 168GB. Of course, in some domains
access to these amounts of labelled data and computing resources can be chal-
lenging. A question arises: can comparable performance be achieved by models
trained on much smaller datasets?



Ground Truth: Two dogs playing in the sand at the beach.
Predicted: Two dogs playing in the sand.

Two dogs playing

in the sand.

input image

output caption

Fig. 1. The task of an image captioning model is to generate a short natural language
description of a given input image. Detail of our proposed model is given in Fig. 2.

In this paper we focus specifically on models that can be trained on a single
consumer-level GPU in under 2 hours, using only a few thousand images. We
make use of the Flickr8k dataset [3], and investigate various strategies that may
improve performance compared to existing work.

We implement the seminal work of Xu et al. [4] as a base model. They intro-
duced the idea of an encoder-decoder architecture within the context of image
captioning, with a transparent attention mechanism that enables the model to
focus on appropriate parts of the image while generating a caption. Attention
also provides a level of explainability, and gives the user a means to evaluate a
model’s understanding of objects, interactions, and the scene as a whole.

We propose the following ideas, and explore their ability to improve perfor-
mance of image captioning models trained on small datasets:

1. A significant challenge in image captioning is the sparse representation of
objects and scenes within a limited set of examples. By extracting attention
regions at various levels of granularity, we aim to present the caption gener-
ator (the decoder) with encodings of the image that carry richer information
and context.

2. The expressiveness of the caption generator is learned from a limited set
of human-annotated captions in the training set, and a model trained on
a small dataset might struggle to generate semantically correct captions.
We therefore introduce a language model during inference, to rescore cap-
tion candidates in a beam-search scheme and suppress semantically unlikely
instances.

3. As mentioned in the previous point, a small dataset may not encapsulate
the diversity of a particular language to a sufficient degree, thus restricting
the vocabulary and expressiveness of the model. As a potential remedy we
augment the training captions by means of a paraphrase generator.

It is shown experimentally that by implementing these ideas, state-of-the-art
performance can be achieved on the Flickr8k test set, across a number of eval-
uation metrics. Additionally, our final model is able to yield competitive results
compared to models from the literature trained on substantially more data.



2 Related Work

Like many problems in modern computer vision, image captioning has been
approached predominantly with variants of deep neural networks. One of the first
models to utilise a neural network [5] uses a multimodal language network that
jointly learns an image-text representation. The model can generate descriptions
of images, and retrieve images given a natural language query. This work was
followed by the first encoder-decoder architecture [6], where an encoder learns
a joint image-text representation and a neural language decoder generates a
description. Mao et al. [7] replaced the feed-forward neural language model with
a recurrent one. A dynamically sized context vector is used, as opposed to a fixed
context window, allowing the decoder access to all previously generated words
in the description. Vinyals et al. [8] used an LSTM as decoder, and their model
presents the image only at the first step of the decoder instead of every step in
the output word sequence.

The above-mentioned works all represent an input image as a single static
feature vector from the last layer of a pre-trained convolutional neural network.
More recent work attempts a more dynamic multi-vector representation of the
image. Xu et al. [4] pioneered this approach, by using the feature maps from early
layers in a pre-trained CNN as a set of feature vectors, and feeding those to an
attention mechanism for information aggregation. We will adopt this architecture
as a base model. The model of Xu et al. [4] considers a uniform grid over the
input image, that does not adapt to the content of the image. To address this
limitation, object-level attention regions have been proposed [9, 10] to enable the
encoding of more fine-grained information.

When training data is limited, the use of object-level attention regions may
not be sufficient for a model to adequately learn about the many appearance
variations of objects and salient regions. In an effort to remedy this, we pro-
pose a combination of object-level attention regions and multi-layer feature map
attention regions. The former typically provides fine-grained image representa-
tion, while the latter might be more coarse-grained. Through a combination of
the two, we construct a richer representation of the image that could lead to
improved caption generation.

A further challenge in image captioning is the potentially low diversity within
the set of sample captions in a typical training dataset. To address this, Atliha
and Šešok [11] proposed using the bidirectional Transformer-based language
model BERT [12] to predict randomly masked out words in a sentence, thereby
providing synonyms for the masked out words. The training set of captions is
thereby expanded, and diversity is increased. We will investigate a similar idea,
but instead of just substituting synonymous words, we train a paraphrase gen-
erator to rephrase entire sentences (i.e. to provide synonyms for words and to
restructure the sentence).

An overwhelming trend in improving the performance of general-purpose
image captioning models is to increase the amount of training data and, conse-
quently, the computing resources required for training. Conversely, little work
has been done on image captioning with limited training data and resources.



Park et al. [13] proposed a model for chest X-ray report generation in an abnor-
mality detection pipeline. They trained this model on about 7,500 X-ray images,
and used a coarse-grained attention mechanism similar to that of Xu et al. [4] on
uniformly sized feature map abstractions. Their output domain is rather narrow,
whereas our aim is to train a general-purpose image captioning model on a small
dataset and compare it to models trained on much larger datasets.

3 Implementation

This section gives details of our proposed model. Firstly, we describe the archi-
tecture of the base encoder-decoder model. Secondly, we describe how a joint
embedding is created through a concatenation of high-level attention regions
from early convolutional layers of a pre-trained CNN, and low-level attention
regions from either the bounding boxes of an object detection module or the
pixel-level masks of an object segmentation module. Thirdly, we describe our
decoder’s beam search procedure for language model suppression of semanti-
cally unlikely caption candidates. Finally, we describe our approach to caption
data augmentation through a paraphrase generator.

3.1 Base Model

Our base model is an encoder-decoder with attention, that jointly learns to
align word-to-region mappings in order to generate a descriptive caption for an
input image. A basic approach would be to encode the image as a single fixed-
sized vector, to serve as a static representation of the image during decoding
(caption generation). We make use of an attention mechanism first proposed
by Dzmitry et al. [14] for neural machine translation, and adapted for image
captioning by Xu et al. [4]. It has been shown that the addition of attention leads
to significantly improved performance over the basic encoder-decoder approach.
The model encodes the input image as a sequence of vectors, instead of a single
vector, and adaptively selects subsets of these vectors during decoding.

The encoder takes an image as input and produces n vectors {a1, . . . ,an},
where each is d-dimensional and corresponds to an attention region of the image.
We explore two approaches to find these vectors for a given image, as explained
in Section 3.2.

For the decoder we make use of an LSTM network [15] that produces a word
at every time step t of the caption generation process. The prediction of a next
word is conditioned on a context vector zt, the previous hidden state ht−1, and
previously generated words. The context vector can be a dynamic representation
of the image at time t, and in our case is produced by the attention mechanism.
This mechanism takes as input the feature vectors ai from the encoder and
provides a weight αt,i for each, as follows:

αt,i =
exp(et,i)∑n
j=1 exp(et,j)

, with et,i = fatt(ai,ht−1) . (1)



In the above equation, fatt is a multi-layer perceptron conditioned on the previ-
ous hidden state ht−1. The weights αt,i are used to create a context vector for
time step t:

zt =

n∑
i=1

αt,iai . (2)

The emphasis placed on each attention region is therefore dependent on the
sequence of words generated thus far, and informs the LSTM decoder what
image content to focus on when generating the next word.

3.2 Multi-level Attention Regions

The soft attention model of Xu et al. [4] makes use of high-level image abstrac-
tions from convolutional layers in a pre-trained CNN. This leads to rectangular
attention regions of predetermined size, that cannot adapt to the appearance of
objects within a particular image. In an attempt to provide richer context to the
LSTM decoder, we consider attention regions that contain whole objects and
other salient image regions. Two ways of extracting such regions from an image
are investigated: bounding boxes from the Faster R-CNN object detection model
[16], and pixel-level masks from the Panoptic FCN segmentation model [17].

Due to a potential representation sparseness when considering only object-
level attention regions, we propose a joint embedding of these low-level regions
and the high-level attention regions from the convolutional layers of a pre-trained
CNN. We therefore increase the number of feature vectors produced by the
encoder (the ai vectors in Section 3.1), for a richer representation of the image.
Figure 2 provides a detailed schematic of the proposed model, with the two levels
of attention regions that are concatenated and fed to the LSTM decoder.

For high-level attention regions (HLAR), we feed the image through the
convolution block of a pre-trained ResNet-152. An early convolutional layer pro-
duces a feature map of size (14, 14, 2048) which we flatten to (196, 2048). For
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ResNet-152 feature map
(14,14,2048)

HLAR produced by
convolutional layers

(196,2048)

object-level
attn regions

stacked LLAR
embeddings
(10,2048)

concatenated
LLAR and HLAR

(206,2048)

Fig. 2. Pipeline of our image captioning model. The encoder learns a joint embedding
of high-level attention regions (HLAR) from ResNet-152 layers, and low-level attention
regions (LLAR) from either the bounding boxes of Faster R-CNN or the segmentation
masks from Panoptic FCN. This is fed to an LSTM decoder for caption generation.



Fig. 3. Faster R-CNN object detection [16] or Panoptic FCN image segmentation [17]
can guide attention regions. The former produces bounding boxes around objects (left),
and the latter a pixel-level mask around objects and salient image regions (right).

low-level attention regions (LLAR), we use either a Faster R-CNN model or a
Panoptic FCN model. Example outputs of these models are shown in Fig. 3.

Faster R-CNN [16] detects objects in two stages. The first stage outputs
object proposals through the refinement of bounding boxes at multiple scales
and aspect ratios, and an assignment of class-agnostic objectness scores. Top
scoring proposals form input to the second stage, where region-of-interest pooling
extracts small feature maps for the classification and further refinement of each
bounding box. We take the output from a pre-trained Faster R-CNN model
and perform non-maximal suppression on each detected object. We crop out the
top 10 bounding boxes (based on their Faster R-CNN classification confidence
scores), and feed each one through a pre-trained ResNet-152 network with the
final softmax layer removed. This yields 10 feature vectors, each being 2048-
dimensional. Panoptic FCN [17] is an efficient fully convolutional network for
pixel-level segmentation of an image into foreground objects and background
regions. It outputs a mask for each object and region. We overlay each mask on
the original image and crop out the tight bounding box. Similar to the above,
we feed crops of the 10 highest-scoring objects or regions through ResNet-152
with the softmax layer removed.

Note that the bounding boxes produced by Faster R-CNN are likely to con-
tain irrelevant background pixels. The pixel-level masks from Panoptic FCN
blank out pixels that do not belong to a particular object or region class, and
might therefore give more precise attention regions for better decoding. However,
Panoptic FCN is computationally more demanding than Faster R-CNN.

The final set of feature vectors {a1, . . . ,a206} is formed as a concatenation
of the HLAR vectors from ResNet-152 and the LLAR vectors from either Faster
R-CNN or Panoptic FCN. This set is used in equation (2) to determine a context
vector at each time step in the LSTM decoder.

3.3 Language Model Rescoring

During training the LSTM decoder learns to model the conditional probability
distribution over the next word given a sequence of already generated words,
and a small training set may limit the decoder’s abilities for expressiveness and



semanticity. For this reason, we propose the incorporation of a pre-trained lan-
guage model in the decoder.

In the basic LSTM formulation, words are picked greedily by taking at every
time step the most likely word from the softmax output probabilities. Instead,
we implement a beam search scheme which expands on all possible versions of
the caption. The k most likely expansions are stored at every time step, where
k is a hyperparameter that controls the number of beams of parallel searches
through the sequence of probabilities. The search process may halt separately
for each candidate sequence by reaching either a maximum length, the end-of-
sequence token, or a threshold likelihood. We penalise a candidate only when the
end token is reached, since the semantic legitimacy of an incomplete sentence is
hard to assess.

Our aim is to keep computational requirements low, and therefore make use of
GPT-2 [18]. It is a network with 1.5 billion parameters (orders of magnitude fewer
than its successor GPT-3), trained on 40GB of Internet text. It uses roughly
3.4GB of memory and takes less than a second to evaluate a given sentence. The
semantic legitimacy of a sentence S = {w1, . . . , wm} is linked to the probability
of the words wi occurring in a certain order. Autoregressive language models
like GPT-2 define the perplexity of S in terms of the negative log-likelihood of
each word conditioned on its predecessors in the sequence:

ppl(S) = exp

(
− 1

m

m∑
i=1

log p(wi|w1, . . . , wi−1)

)
. (3)

The likelihood function p(wi|w1:i−1) is learned by the language model during
training. We note that perplexity is always positive, and that lower values imply
higher model confidence in the semantic legitimacy of S.

During beam search, partially generated captions are scored by their cumu-
lative log-likelihood up to the current time step in the LSTM. We penalise the
score of a completed caption candidate by subtracting λ times its GPT-2 per-
plexity, where λ is a hyperparameter (through cross-validation we found λ = 1
to work well). This suppresses the scores of semantically unlikely candidates, and
increases the quality of output captions. We emphasise that rescoring happens
only at test time, and does not have any effect on training resources.

3.4 Caption Data Augmentation

The Flickr8k dataset [3] contains 8,000 images, with 5 human-annotated captions
for each. As a means of increasing diversity in the set of training captions, we
propose a simple data augmentation strategy. We make use of the Text-To-Text
Transfer Transformer (T5) framework [19] and train a T5 model specifically as
a paraphrase generator using the PAWS dataset [20], which consists of sentence
pairs (paraphrases) with low lexical overlap. Different versions of the Flickr8k
captions can thus be generated, as illustrated in Fig. 4. In doing so, vocabulary
and structure diversity in the training captions are increased, which may lead to
a more expressive model.



Original annotated captions Paraphrased Captions
A child in a pink dress is climbing up a set of stairs in an entry 
way 

A child dressed in a pink dress climbing a set of stairs in an entry 
way 

A girl going into a wooden A girl walking into a wooden building

A little girl climbing into a wooden playhouse A girl climbs into a wood playhouse

A little girl climbing the stairs to her playhouse A little girl climbs the stairs to a playhouse 

A little girl in a pink dress going into a wooden cabin A little girl dressed in a pink dress is going into a wooden cabin

Original captions from dataset Paraphrased captions

A child in a pink dress is climbing up A child dressed in a pink dress climbing
a set of stairs in an entry way. a set of stairs in an entry way.

A girl going into a wooden building. A girl walking into a wooden building.

A little girl climbing into a wooden A girl climbs into a wood playhouse.
playhouse.

A little girl climbing the stairs to her A little girl climbs the stairs to a
playhouse. playhouse.

A little girl in a pink dress going into A little girl dressed in a pink dress is
a wooden cabin. going into a wooden cabin.

Fig. 4. An image from the Flickr8k training set along with the human annotated
captions (left column) and augmented captions achieved through paraphrasing (right
column).

4 Experiments

In this section we describe the dataset and metrics to quantitatively evaluate the
components of our model. We compare our full model with a number of existing
models from the literature, when trained on the same dataset and when trained
on a much larger dataset. The section ends with a brief qualitative analysis.

4.1 Dataset and Evaluation Metrics

Our models are trained and evaluated on the Flickr8k dataset [3]. It consists
of 8,000 images, with 5 human-annotated captions for each, and is relatively
small compared to the more widely used MS COCO [2] which contains about
328,000 images. Flickr8k has a standardised training-validation-test split with
6,000, 1,000 and 1,000 images in each set respectively.

For model evaluation we make use of standard image captioning metrics,
namely BLEU [21], METEOR [22] and CIDEr-D [23]. The BLEU-n score mea-
sures the similarity between reference and generated sentences as the geometric
mean of n-gram precision scores, with a penalty for short sentences. BLEU is
widely used but has its limitations [24], and additional metrics should be con-
sidered. METEOR is the harmonic mean of precision and recall of uni-gram
matches between the reference and generated sentence, and may accept syn-
onyms and paraphrases. CIDEr-D measures similarity to a set of references using
co-occurrence statistics of n-grams, where n = 1, 2, 3, 4. Common n-grams are
inversely weighted and a cosine similarity is computed. All metrics except for
CIDEr-D range from 0 to 1, with 1 indicating a perfect match. In theory CIDEr-
D can reach a maximum of 10, but due to its strictness scores are generally also
between 0 and 1. We will print all scores as percentages.

We compare a generated caption to each of the 5 human-annotated captions
and take an average of the 5 scores in the case of BLEU, and a maximum in the



case of METEOR and CIDEr-D. Due to the non-standardised use of metrics in
the context of image caption evaluation [25], we verified our code with that of
cited work [4, 5, 8].

4.2 Quantitative Analysis

Table 1 shows the performance on the Flickr8k test set of our model’s compo-
nents as an ablation study, as well as the full model, compared to models from the
literature. Missing values mean that those particular metrics were not reported
in the cited papers. Our base model is a re-implementation of the soft attention
approach of Xu et al. [4]. We measure the effects of incorporating object-level
attention regions into this base model, using Faster R-CNN and Panoptic FCN
separately. We also measure the effects of applying language model (LM) rescor-
ing during inference in the base model, as well as caption data augmentation
(again on the base model, without any of the other components). Our full model
consists of the base model with additional attention regions from Panoptic FCN,
language model rescoring during inference, and caption data augmentation.

The inclusion of object-level attention regions brings improvement across
all metrics, and indicates that a richer representation of the input image at
multiple granularities can be beneficial. The segmentation masks from Panoptic
FCN lead to slightly better results over the bounding boxes from Faster R-CNN,
probably due to the masks disregarding background information on a finer scale.
It may be noted that the additional attention regions lead to the best CIDEr-D
scores, across all versions of our model. Incorporating language model rescoring
during beam search inference, and augmenting the training set of captions with a
paraphrase generator, both lead to marginal improvements over the base model.
These relatively small increases in performance may need to be weighed against
the additional computational requirements. With the full model combining the
base with high- and low-level attention regions, language model rescoring and
caption augmentation, increases of 1.6 to 3.3 percentage points over published

Table 1. Versions of our model compared to models from the literature. All models
were trained on the Flickr8k training set and evaluated on the Flickr8k test set. BL-n,
MTR and CDR are short for the BLEU-n, METEOR and CIDEr-D evaluation metrics.

Model BL-1 BL-2 BL-3 BL-4 MTR CDR

Google NIC [8] 63.0 41.0 27.0 - - -
Log bilinear [5] 65.6 42.4 27.7 17.7 17.3 -
Soft attention [4] 67.0 44.8 29.9 19.5 18.9 -
Hard attention [4] 67.0 45.7 31.4 21.3 20.3 -

Our base model 66.3 44.2 28.7 20.6 18.6 48.6
Attn: Faster R-CNN 66.5 46.4 32.4 22.4 22.5 53.5
Attn: Panoptic FCN 67.1 47.2 33.2 23.2 22.6 53.5
LM rescoring 66.8 46.5 32.3 22.4 22.3 51.6
Caption augmentation 66.7 46.2 32.2 22.1 22.5 50.9

Our full model 68.6 48.5 34.7 24.5 23.2 49.2



results are achieved. Based on current trends in the image captioning literature,
these increases are certainly not insignificant.

The use of a small dataset in training a deep neural network can easily lead to
overfitting and poor generalisation. For this reason we made use of various reg-
ularisation strategies including dropout, small batch sizes, early stopping based
on validation BLEU scores, and caption data augmentation. To get a sense of
whether overfitting is present in our full model trained on Flickr8k, we plot in
Fig. 5 the BLEU, METEOR and CIDEr-D scores achieved by the trained model
on the training set and on the test set. A slight tendency to overfitting can be
observed, but it does not seem severe. The difference in CIDEr-D scores seems
large, but relative to the maximum for that metric (10, or 1000 percent) it is
actually also quite small.

Next we compare the performance of our full model trained on 6,000 images
from Flickr8k to models from the literature trained on MS COCO which has
over 165,000 images in its training set. Results are given in Table 2, where all
models are evaluated against the Flickr8k test set. We observe that our full
model performs on average within 1.6% of the best model (Hard attention). All
models in Table 2 except ours were trained with over 25 times more data than
our model. With this in mind, the drop in performance can be deemed small
and we achieved our objective of obtaining competitive results.

Table 3 shows the training times required by the variations of our model
on the Flickr8k training set, with a single consumer-level GPU (specifically a
GTX 1070 Ti). The language model rescoring variant is not included in this
table since it does not affect training. It may be observed that, out of all the
individual components, the low-level attention regions from Panoptic FCN leads
to the highest increase in training time. However, this component also gives the
greatest increase in performance over the base model (as shown in Table 1). Note
that all versions of our model, including the full one, trains in under 2 hours on
a single GPU.
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Fig. 5. Evaluation scores that our full model trained on the Flickr8k training set
achieves on the Flickr8k training set (blue) and the Flickr8k test set (orange).



Table 2. Our model trained on the Flickr8k training set (6,000 images) compared to
models from the literature trained on the MS COCO training set (165,482 images). All
models are evaluated on the Flickr8k test set.

Model BL-1 BL-2 BL-3 BL-4 MTR CDR

Google NIC [8] 66.6 46.1 32.9 24.6 - -
Log bilinear [5] 70.8 48.9 34.4 24.3 20.0 -
Soft attention [4] 70.7 49.2 34.4 24.3 23.9 -
Hard attention [4] 71.8 50.4 35.7 25.0 23.0 -

Our full model 68.6 48.5 34.7 24.5 23.2 49.2

Table 3. Training times required by versions of our model, using the Flickr8k training
set and running on a GTX 1070 Ti GPU.

Model Training time

Our base model 1h 01m 01s
Attn: Faster R-CNN 1h 14m 41s
Attn: Panoptic FCN 1h 23m 32s
Caption augmentation 1h 10m 25s

Our full model 1h 51m 25s

4.3 Qualitative Analysis

We visualise in Fig. 6 the attention mechanism as the decoder of our full model
generates a caption for a sample image from the Flickr8k test set. At each step
of caption generation the LSTM is fed a context vector, hidden state, and the
previously generated word. The context vector consists of a weighted sum of
attention maps, which in this case stem from a Panoptic FCN segmentation of the
input image. We visualise these visual contexts, for an idea of which regions the
model deems important while generating words. The weighted attention maps do
align to some degree with human intuition. For example, in generating the word
dogs the model focuses mostly on pixels belonging to the dogs and ignores all
other regions. Similarly, when generating the word water the emphasis is mostly
on the water region. Note that this ability is learned from image-caption pairs.
The model does not receive any region-specific labels during training.

Contrary to conventional attention mechanisms, our model is able to as-
sociate entire objects and sub-object regions to words. Visual information is
considered at different levels of granularity, thus avoiding the trade-off between
focusing solely on coarse regions and focusing solely on finer regions. Our model
can focus on the entire water surface when predicting the word water, and on
smaller regions such as the dog’s mouth when predicting the word playing.

Figure 7 provides examples of captions generated by our full model. Based
on BLEU scores, captions in the top row are “good” while those in the bottom
row are “bad”. Some of the bad examples (e.g. bottom right) are subjectively
accurate, highlighting an inherent limitation in the quantitative evaluation of
machine generated text against human-annotated labels.



Two dogs are playing

in the water .

Fig. 6. A visualisation of the weighted average attention maps considered by our full
model during caption generation, for a sample image from the Flickr8k test set.

A woman in a red shirt and white is
playing tennis.

A woman in a red shirt is playing tennis.

A small dog catches a tennis ball in its
mouth.

A dog catches a tennis ball in its mouth.

A boy in a red shirt riding a skateboard
on the street.

A boy in a red shirt is skateboarding.

Two people sit side up against a tree.

Two boys are playing in the water.

Children looking through magazines they
have folded into tubes.

Group of people on a bench.

Two little girls are posing for a picture on
a boat.

Two children smile.

Fig. 7. Examples of captions generated by our full model for Flickr8k test images.
Ground truth captions are shown in grey. Generated captions with high and low BLEU
scores are shown in green and red, respectively.

5 Conclusion

This paper considered the challenge of training an effective image captioning
model on a small dataset and limited hardware resources. We found that by
exploiting the modularity of the encoder-decoder architecture, and leveraging
off-the-shelf models pre-trained for other tasks, we could increase the perfor-



mance of a baseline attention model by Xu et al. [4]. Firstly, we showed that
by representing image attention regions at multiple levels of granularity, richer
context could be provided to the decoder. Secondly, we showed that by using
a pre-trained language model to suppress semantically unlikely caption candi-
dates in a beam search scheme during inference, better quality captions could
be produced. Thirdly, we managed to improve the vocabulary and expressive-
ness of the model by augmenting training captions with the aid of a paraphrase
generator. A combination of all these three ideas led to state-of-the-art results
on the Flickr8k dataset, and competitive results compared to models trained on
much larger datasets.

Further improvements in terms of training time and memory requirements
are possible through the use of mixed precision training [26], which could in turn
enable better hyperparameter tuning. In future we also aim to investigate the use
of Transformers within an encoder-decoder architecture, and find a meaningful
way in which to compare our resource-efficient model with even bigger models
like Oscar [1]. Finally, it should be noted that our comparison in Table 2 has its
limitations, since the models were trained on samples from (possibly) different
data distributions. A fairer comparison might be to train our model on a carefully
extracted subset of MS COCO.
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