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Abstract. Knowledge graphs can be used to represent interconnected
facts about multiple domains as entities (nodes) and relations (edges).
The resource description framework (RDF) formalism can be used to en-
code such facts as subject-predicate-object triples. Link prediction then
powers knowledge discovery by scoring possible relationships between en-
tities. Tensor decomposition is an attractive approach to link prediction,
as relational domains are usually high-dimensional and sparse; a setting
where factorisation methods, particularly the HypER model, have shown
very good results. Modern approaches typically also contain nonlinear
neural networks to enable the learning of powerful latent representa-
tions of entities and relations in a continuous vector space. We introduce
optimisations to the training algorithm of HypER, by using batch nor-
malisation to compensate for covariate shift caused by hypernetworks,
and propose HypER+. We see similar performance to the HypER base-
line on the WN18 dataset, and significant improvement on the FB15k
dataset. We then extend our model by initialising entity and relation em-
beddings with pre-trained word vectors from the GloVe language model,
and see further improvements over the baselines on the more challenging
WN18RR and FB15k-237 datasets. Our results establish HypER+ as a
state-of-the-art model in latent feature modelling based link prediction.

Keywords: Link prediction · Tensor decomposition · Hypernetworks.

1 Introduction

Reasoning over knowledge expressed in natural language is a problem at the
forefront of artificial intelligence research. Question answering is a core task of
this problem, and is concerned with giving machines the capability of generating
an answer given a question.

Knowledge graphs (KGs) model facts as entities (nodes) and relations be-
tween entities (edges) [1]. The resource description framework formalism encodes
facts as triples of the form “subject-predicate-object”, where the subject and ob-
ject are entities, and the predicate is a relation [2]. An example could be the fact
that the subject “Chadwick Boseman” is related to the object “Black Panther”
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by the predicate “starred in”. Question answering then relies on knowledge dis-
covery; a step-by-step deductive process of inferring new facts from a given set of
known facts. Statistical relational learning (SRL) solves the knowledge discovery
problem by constructing models with measures of uncertainty in plausible facts
not contained in KGs [3].

There has been encouraging progress in SRL to model knowledge in open-
domain settings [4]. Link prediction, i.e. inferring plausible relations between
KG entities, is now often used as a paradigm for knowledge discovery [5–7].
Latent feature modelling using tensor factorisation [8] is an approach to link
prediction that has seen some promising results [9–11]. The first major mile-
stone was demonstrating the bilinear tensor product as a promising model to
link prediction [12]. In this model a vector representation of the subject is mul-
tiplied with a predicate matrix to produce an entity-relational vector, and the
inner product with an object vector then provides a relational plausibility score
for the subject and object entities. The second milestone was an integration of
the bilinear tensor product and neural networks [13], effectively extending linear
tensor factorisation techniques to nonlinear techniques and also enabling the use
of pre-trained word embeddings to initialise entity and relation vectors. Third
was the use of complex valued embeddings for link prediction [14], to effectively
capture antisymmetric relations. Up until that point research had focused on
minimising the parameterisation of models. Convolutional networks are param-
eter efficient, and progress was again realised with the use of deep convolutional
models for link prediction [15]. The HypER model [16] introduced the use of hy-
pernetworks (a class of meta-networks trained to configure a main network [17])
to transform relational vectors into relation-specific convolutional filters used by
a main network.

In this work we first introduce training algorithm optimisations to a Tensor-
Flow reimplementation of a baseline neural tensor network (NTN) model [18].
We then adapt the HypER model by applying batch normalisation, in an effort
to mitigate covariate shift in its hypernetwork, and call the new model HypER+.
Finally, in an attempt to leverage semantic information from very large text cor-
pora, we integrate pre-trained word vectors into the HypER+ training process
to initialise entity and relational vectors in place of standard random initialisa-
tion. Our experimental results on benchmark datasets establish HypER+ as a
state-of-the-art model in latent feature modelling based link prediction.

2 Related Work

Statistical relational learning is comprised of three paradigms: latent feature
modelling, graph modelling and inductive probabilistic logic programming. In
this paper we focus on latent feature modelling approaches, and refer the reader
to [1] for a review of the other two. Techniques based on tensor factorisation have
become popular in latent feature modelling based link prediction, and decompose
relational data represented as a tensor of relational scores to generate a set of
constituent vectors.
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The RESCAL model by Nickel et al. [12] decomposes a relational score tensor
S into an entity matrix E ∈ Rn×r, a relational tensor R ∈ Rr×r×m and the
transpose of the entity matrix ET ∈ Rr×n, as follows:

S ≈ ERET . (1)

The entity matrix E is composed of entity vectors ei ∈ R1×r, and the relational
tensor R is composed of full-rank matrix slices Wk ∈ Rr×r, where k ∈ {1, . . . ,m}
is the set of KG relations. The vector-matrix product between entity ei and
relational matrix Wk generates an entity-relational vector hi,k ∈ R1×r. The
inner product between hi,k and entity vector ej ∈ Rr×1 generates a relational
score si,k,j indicating the plausibility of entities i and j being linked by relation
k. In this framework the entities and relations have latent vector representations
computed using a parameterised function, and the idea would be for the model to
learn optimal parameters from data. Training RESCAL amounts to minimising
a squared error between known facts and model predictions.

The TransE model by Bordes et al. [19] follows a premise that many KG
facts are presented in hierarchies, and that a translation of the subject vector
by the relation should produce an embedding close to the object. The DistMul
model by Yang et al. [20] first transforms the subject and object vectors into low-
dimensional representations, and then applies a bilinear tensor product using a
diagonal relation matrix. This approach effectively models a subset of the entity-
relational interactions of RESCAL, and relies on its dimensionality reduction to
generate sufficient semantic information. The ComplEx model by Trouillon et
al. [14] represents entities with complex vectors, and relations with complex
diagonal matrices, to allow the modelling of antisymmetric interactions (such as
the predicate “starred in”, for example) where the subject and object are not
interchangeable. The mentioned approaches all rely on linear tensor factorisation
for latent feature modelling. They scale well with large datasets but are limited
in their expressiveness.

The neural tensor network (NTN) model by Socher et al. [13] extends the
bilinear tensor product in two ways. Firstly, it makes use of a recursive network
to score a composition between two entities, and adds that score to the output of
the bilinear tensor product to produce a relational score. Secondly, the computed
relational score is passed through a squashing nonlinearity in order to generate
a measure of confidence in a potential relationship between the two entities.
These extensions enable higher levels of expressiveness and increase prediction
performance significantly.

Hohenecker and Lukasiewicz [21] extended the NTN model by pre-computing
an object representation as an aggregation of all facts in which the object plays
a part, and called the new model a relational NTN. The HolE model by Nickel
et al. [11] uses a circular correlation during relation prediction. This operation
is performed between a subject vector ei and an object vector ej , by sliding the
object over the subject, and an inner product with the predicate vector then pro-
duces a relational score. The ConvE model by Dettmers et al. [15] introduces the
convolutional operator in entity-relational modelling. A subject vector ei ∈ Rr



4 L. Magangane and W. Brink

and a predicate vector wk ∈ Rr are reshaped individually to ei ∈ Rrw×rh and
wk ∈ Rrw×rh , and then vertically concatenated to create an entity-relational
matrix M ∈ Rrw×2rh . Convolutions are performed on M using a set of trainable
filters, shared among all subject-predicate combinations. This creates a feature
map that is flattened and passed through a fully-connected layer with a nonlin-
earity. Inner products are taken with all object vectors to create relational scores,
which can be converted to probabilities with the sigmoid function. The convo-
lutional operator increases expressiveness by modelling entity-relation feature
interactions across the entire line of concatenation.

The HypER model by Balaz̆ev́ıc et al. [16] extends convolutional tensor fac-
torisation by using a hypernetwork [17] to generate 2D relation-specific convo-
lutional filters as predicate matrices. A 2D convolution is then taken between a
subject vector and predicate matrix, the resulting feature map is reshaped and
passed through a fully-connected layer with a nonlinearity, and an inner product
leads to relational scores. The hypernetwork may introduce covariate shift [22],
or a change in the distribution of inputs to a current layer, due to the simultane-
ous update of current layer weights and previous layer weights during training.
Covariate shift slows down training and may degrade model performance during
inference.

We aim to further improve link prediction performance of HypER on stan-
dard benchmark datasets, by optimising various aspects of training. To this end,
we update the base NTN training algorithm with early stopping, Adam op-
timisation [23] and hyperparameter random search [24]. We then address the
potential covariate shift introduced by hypernetworks, and also use pre-trained
word vectors for initialising entity and relational vector embeddings.

3 Neural Tensor Factorisation

Tensor factorisation has shown promise in domains that are high-dimensional
and sparse, and lends itself to efficient GPU computation. In the context of
KGs, relational score tensors are decomposed into an entity matrix, a relational
tensor and a transposed entity matrix. The entity matrix is composed of latent
entity representations generated with trainable parameters. The relational tensor
is composed of relational matrix slices, also generated with trainable parameters.
In practice the bilinear tensor product between the entity matrix, the relational
tensor and the transposed entity matrix leads to unnormalised relational scores
for potential triples, from which a link can be predicted as the argmax over those
scores.

Early tensor factorisation approaches focused on limiting the total number
of model parameters in order to scale to large KGs, often at the expense of
sufficiently complex entity-relational interaction modelling. In this section we
expound on recent significant milestones in latent feature modelling approaches
to link prediction that take advantage of the expressiveness of neural composi-
tional models. We also discuss our proposed improvements.
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3.1 Neural Tensor Networks

Socher et al. [13] introduced the use of recursive entity representations in the
composition of the relational score. Recursive networks try to capture the rules
for word combinations by constructing a composition tree between words, in a
sequence of words. The NTN model takes advantage of these compositional rules
by adding them to the bilinear tensor product as follows:

gi,k,j = uTk f
(
eTi W

[1:m]
k ej + Vk

[
ei
ej

]
+ bk

)
. (2)

Here gi,k,j is the relational score tensor for subject i, object j and relation k,
uk ∈ Rm×1 is an output layer of trainable weights, and f is the tanh activation

function. eTi W
[1:m]
k ej is the bilinear tensor product between subject vector ei ∈

Rr×1 and object vector ej ∈ Rr×1, for relations Wk ∈ Rr×r, and bk is a trainable
bias vector. Vk[ eTi eTj ]T is the recursive entity composition, with Vk ∈ Rm×2r

a matrix of trainable parameters.

During training a contrastive max-margin loss is minimised. This loss incor-
porates the score g(T (n)) of a correct sample (a fact present in the KG) and the

score g(T
(n)
c ) of a corrupt sample (a randomly generated fact not present in the

KG), as follows:

J(Ω) =

N∑
n=1

C∑
c=1

max
(
0, 1− g(T (n)) + g(T (n)

c )
)

+ λ||Ω||22, (3)

where Ω contains all the trainable parameters, N is the number of training
samples, and C is the number of randomly corrupted facts to be used per true
fact. The hyperparameter λ controls the importance of the ridge regulariser in
this loss.

Doss et al. [18] reimplemented the NTN model in TensorFlow. This reim-
plementation underperforms compared to the original model (as we also find in
Section 4.3), relying on AdaGrad optimisation and the same hyperparameters.
In an attempt to improve the performance of the reimplementation we apply
early stopping, the more modern Adam optimisation algorithm [23] as well as
hyperparameter random search [24]. Early stopping tries to prevent overfitting,
by tracking performance on the validation set during training and halting the
training process as soon as it decreases significantly. Adam is a gradient based
stochastic optimisation algorithm that tries to compensate for the sparse gradi-
ent signal problem, by incorporating first- and second-order moments of the gra-
dient and parameter-specific adaptive learning rates. Hyperparameter random
search defines intervals for all model hyperparameters and randomly samples
from those intervals for a set number of training runs, thus taking advantage
of the hypothesis that for many datasets only a subset of hyperparameters con-
tribute meaningful variance in model performance, and eliminating the need for
a costly exhaustive search.



6 L. Magangane and W. Brink

3.2 Convolutional Networks

The ConvE model of Dettmers et al. [15] introduces the convolutional operator
to neural tensor factorisation Specifically, this operator increases expressiveness
in entity-relation interaction modelling by using 2D convolutions, which have
been found to be particularly effective at modelling the interactions of entities
involved in a large number of relations. This may be due to filter parameter
sharing between entity-relational combination features, but perhaps more perti-
nently, the convolutional operator captures a larger variety of entity-relational
feature interactions when summarising regions between the respective represen-
tations, whereas the bilinear tensor product performs interaction modelling using
a simple inner product.

ConvE concatenates subject and predicate matrices along the row axis, and
takes convolutions with trainable filters to produce feature maps. The feature
maps are flattened and passed through a fully-connected layer with ReLU ac-
tivation, to generate a latent vector representation. The inner product of this
vector and the object vector then leads to an unnormalised relational score for
the triple, which is passed through softmax normalisation.

During training a cross-entropy loss is minimised. This loss function is par-
ticularly appropriate as we expect only a single object to belong to the fact
(subject-predicate-object) and generate a probability close to 1, and every other
object to not belong to the fact, generating a probability close to 0.

3.3 Hypernetworks

The HypER model of Balaz̆ević et al. [16] extends convolutional tensor factorisa-
tion by using a hypernetwork [17] to generate 2D relation-specific convolutional
filters as predicate matrices. A hypernetwork is a meta-network that generates
parameters for a main network. It compresses those parameters into an input
embedding vector, which is analogous to encoding a main network configuration
and effectively reduces the total number of parameters without sacrificing per-
formance. The embedding parameters of the hypernetwork are learned during
end-to-end training of the main network.

HyPER makes use of a hypernetwork to generate relation-specific convolu-
tional filters, where the subject and predicate filter are used in a convolution
operation to generate a subject-predicate feature map. The feature map is flat-
tened into a vector and passed through a fully-connected layer which outputs
a hidden vector that is passed through a ReLU nonlinearity. An inner prod-
uct is then taken with the object vector to produce an unnormalised relational
score, and finally a softmax normalisation is applied to generate probabilities for
potential relationships between pairs of entities.

We make the observation that hypernetworks may suffer from covariate shift.
The hypernetwork generates relational filters for the main network from rela-
tional embedding inputs. During training, the distribution of the latent param-
eters of the relational embeddings could change, altering the inputs used to
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generate the filters. This change in distribution may make it hard for the hyper-
network’s fully-connected layer to learn the most useful parameters for creating
relational filters. Moreover, since the relational filters are used early (upstream)
in the main network, the effect of their suboptimal weights might be amplified. To
address this issue, we introduce relational input batch normalisation [22]. This
operation performs normalisation on relational input batches during training,
such that each batch has zero mean and unit variance, to regulate hypernetwork
input and prevent covariate shift.

We refer to our improved model, which incorporates the training optimisa-
tions mentioned at the end of Section 3.1 as well as batch normalisation in the
hypernetwork, as HypER+.

3.4 Pre-trained Word Vectors

As an additional potential improvement we also incorporate pre-trained word
vectors from the GloVe language model [25]. Language models capture statistical
correlations between words in a language, and in so doing attempt to build an
understanding of the semantics of that language. Word meaning is embedded
(or encoded) in a vector space, where words that share semantic meaning may
be collocated. The GloVe model generates word vectors from both local and
global co-occurrence statistics of words in a text corpus, and has been found to
outperform other popular models (like Word2Vec).

KGs are comprised of vocabularies of entities and relations. These vocabu-
laries contain a KG word to ID map, which is used during model training to
identify the respective entity or relation. A pre-trained GloVe language model is
a map of words to vectors, and can be used to look up the corresponding vectors
for entities or relations in the KG.

Instead of the standard random initialisation of word vector embeddings,
we experiment with using pre-trained GloVe word vectors to initialise 200-
dimensional entity and relation embeddings. The respective embeddings are
generated by aggregating the set of vectors corresponding to the sequence of
words that describe them (where a pre-trained vector does not exist for a par-
ticular word, a randomly initialised vector can be generated in its place). This
process generates two KG pre-trained vector to ID maps, one for entities and
one for relations, and these maps are used to initialise the model entity and
relation embeddings respectively. The embeddings are trainable, and updated
during end-to-end training of HypER+ to generate representations specific to
the KG under consideration.

4 Experiments

We proceed with an empirical examination of the three contributions of this
work, namely (1) the application of training optimisation to neural tensor net-
works, (2) compensating for covariate shift in hypernetworks used for convo-
lutional tensor factorisation, and (3) the initialisation of entity and relation
embeddings with pre-trained word vectors.
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We evaluate our models on three pairs of progressively more challenging
benchmark link prediction datasets (detailed in Section 4.1), and compare a
number of performance metrics (explained in Section 4.2) against existing and
current state-of-the-art models (Section 4.3). The different datasets illuminate
specific aspects, and informal experimentation with exhaustive training of all
models on all datasets suggests trends similar to those reported in this paper.

All code needed to train and test our models, and reproduce the results in
this section, are available at https://github.com/xhosaBoy.

4.1 Benchmark Datasets

Two of the earliest datasets used to evaluate link prediction are called WN11
and FB13, and were extracted from WordNet [26] and Freebase [27], respectively.
WordNet is a lexical database for English, containing a taxonomy with hyper-
nym relationships (“is a”) and synonym sets. Freebase is a large collaborative
knowledge base composed mainly by community members. WN11 contains just
over 125,000 triples, split into training, validation and test sets as indicated in
Table 1, with 38,696 unique entities (subjects and objects, each corresponding
to a WordNet synset) and 11 unique relations (predicates). FB13 has close to
350,000 triples in total, with 75,043 unique entities and 13 relations.

The WN18 and FB15k datasets were introduced later by Bordes et al. [19].
WN18 consists of about 150,000 triples, split into training, validation and tests
sets as indicated in Table 1, and includes 18 unique relations for about 41,000
unique entities from WordNet. FB15k has almost 600,000 triplets, consisting of
14,951 unique entities and 1,345 unique relations.

It was found that WN18 and FB15k both suffer from significant label leakage
through inverse relations [15, 28], that is to say many triples in the test sets occur
in inverted form in the training sets, making it easy for simple models to do well.
Datasets WN18RR [15] and FB15k-237 [28] were created in an effort to avoid
such leakage, through the removal of inverse relations from WN18 and FB15k,
respectively. WN18RR has just over 93,000 triples over about 41,000 entities and
11 relations, while FB15k-237 has about 310,000 triples over 14,541 entities and
237 relations.

Table 1. The number of triples in the training, validation and tests sets of the three
pairs of benchmark datasets considered in this study, along with the number of unique
entities and unique relations in each.

Dataset Train Val Test Entities Relations

WN11 [26] 112,581 2,609 10,544 38,696 11
FB13 [27] 316,232 5,908 23,733 75,043 13

WN18 [19] 141,442 5,000 5,000 40,943 18
FB15k [19] 483,142 50,000 59,071 14,951 1,345

WN18RR [15] 86,835 3,034 3,134 40,943 11
FB15k-237 [28] 272,115 17,535 20,466 14,541 237
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4.2 Performance Metrics

We report a set of standard performance metrics used in the link prediction
literature, namely Hit@10, Hit@3, Hit@1 and Mean Reciprocal Rank (MRR).
Hit@k (or H@k for short) measures the fraction of times the correct label occurs
in the top k predictions, if outputs are ordered by confidence scores. MRR is the
average predicted inverse rank of correct labels. For example, if the true label
is predicted as the third most likely output, the predicted inverse rank for that
sample is 1/3.

All of these metrics will be expressed as percentages, and measured over
the respective test sets of the various benchmark datasets, using only the final
versions of models (after hyperparameter selection and training).

4.3 Results

For the first set of experiments we use the WN11 and FB13 datasets for train-
ing, validation and testing. We compare the test prediction accuracy (Hit@1)
achieved by the original NTN model, as reported by Socher et al. [13], with the
TensorFlow reimplementation [18] and our optimised version that incorporates
early stopping, the Adam optimiser and hyperparamter random search.

Results are presented in Table 2. Our model outperforms the TensorFlow
reimplementation, and quite significantly on the WN11 dataset. Training loss
curves suggest that hyperparameter random search is mostly responsible for
this improvement, as our model begins to outperform the baseline from the
first training epoch. Reported results of the original NTN model are still far
superior, possibly due to other (unknown) training algorithm modifications and
optimisations.

Table 2. Link prediction accuracies (as percentages) achieved by the indicated models
on the WN11 and FB13 test sets.

Model WN11 FB13

Original NTN model [13] 86.2 90.0
TensorFlow reimplemented NTN [18] 56.2 53.5
Optimised (ours) 67.4 54.8

For the second set of experiments we use the WN18 and FB15k datasets for
training, validation and testing. In Table 3 we compare the test set performance
of our HypER+ model against HypER and also a suite of previous state-of-
the-art models. Two models not mentioned in Section 2 are included here for
completeness, namely TorusE [6] and R-GCN [29]. TorusE is an extension of the
TransE model that circumvents a certain regularisation problem, while R-GCN
models relational data with graph convolutional networks.

On the WN18 dataset our HypER+ model achieves results very close to
the HypER model, across all metrics. The R-GCN model achieves the highest
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Table 3. Link prediction results on the WN18 and FB15k test sets, as achieved by the
indicated models. Our HypER+ model is the bottom row, and best results per column
are shown in bold.

Model
WN18 FB15k

H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR

TransE [19] 89.2 - - - 47.1 - - -
DistMul [20] 93.6 91.4 72.8 82.2 82.4 73.3 54.6 65.4
ComplEx [14] 94.7 93.6 93.6 94.1 84.0 75.9 59.9 69.2
R-GCN [29] 96.4 92.9 69.7 81.9 84.2 76.0 60.1 69.6
TorusE [6] 95.4 95.0 94.3 94.7 83.2 77.1 67.4 73.3
ConvE [15] 95.6 94.6 93.5 94.3 83.1 72.3 55.8 65.7
HypER [16] 95.8 95.5 94.7 95.1 88.5 82.9 73.4 79.0
HypER+ (ours) 95.7 95.4 94.6 95.0 89.4 85.6 79.0 82.9

Hit@10 performance, but performs relatively poorly across the other metrics
(especially Hit@1). On the FB15k dataset our HypER+ model outperforms all
other models significantly. The impact of batch normalisation in the hypernet-
work is pronounced, perhaps due to the upstream influence of predicate input
covariate shift.

For the third and final set of experiments we use the WN18RR and FB15k-237
datasets for training, validation and testing. These datasets are more challenging
subsets of the previous two (WN18 and FB15k), with inverse relations removed
to prevent test leakage. Here we compare two versions of our HypER+ model
with previous state-of-the-art models: one with randomly initialised embedding
vectors and one initialised with pre-trained GloVe word vectors. Results are
listed in Table 4.

Our HypER+ model with pre-trained GloVe initialisation leads to state-
of-the-art performance across both WN18RR and FB15k-237. The pre-trained
embeddings have a particularly pronounced impact on the Hit@10 metric over
WN18RR, perhaps due to the smaller number samples in this dataset, but a
diminished impact on the Hit@1 metric. Overall it seems as if the pre-trained

Table 4. Link prediction results on the more challenging WN18RR and FB15k-237
test sets, as achieved by the indicated models. Our original HypER+ model and one
that was initialised at training time with pre-trained GloVe word vectors form the last
two rows, and best results per column are shown in bold.

Model
WN18RR FB15k-237

H@10 H@3 H@1 MRR H@10 H@3 H@1 MRR

DistMul [20] 49.0 44.0 39.0 43.0 41.9 26.3 15.5 24.1
ComplEx [14] 51.0 46.0 41.0 44.0 42.8 27.5 15.8 24.7
ConvE [15] 52.0 44.0 40.0 43.0 50.1 35.6 23.7 32.5
HypER [16] 52.2 47.7 43.6 46.5 52.0 37.6 25.2 34.1
HypER+ (ours) 51.9 47.9 43.8 46.6 51.6 36.8 24.5 33.5
GloVe init (ours) 57.8 49.3 43.5 48.0 52.5 37.9 25.5 34.5
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embeddings may provide a more meaningful contribution than batch normalisa-
tion in the hypernetwork, as suggested by the inferior performance of HypER+
compared to HypER. Somewhat strangely, this is inconsistent with training and
validation accuracies, where HypER+ consistently outperformed HypER. The
fact that we use the quoted HypER test results, as opposed to reimplemented
and verified test results, may be a partial explanation. That inconsistency aside,
pre-trained embeddings from the GloVe language model appear to be effective
at improving link prediction performance.

Figure 1 shows the Hit@1 test set accuracy for each of 10 relations from
WN18RR, as achieved by our HypER+ model initialised with pre-trained word
vectors. The model performs well with synonym relation types, but poorly with
compositional and hierarchical relations. This may be due to the inherent sim-
ilarity and analogy in concepts, whereas compositions and hierarchies can be
defined by strict rules. Perhaps, more simply, it could be due to the number of
test set samples for each relation, where higher numbers increase the prediction
error rate.

similar to

derivationally related from

verb group

instance hypernym

also see

synset domain topic of

hypernym

member of domain region

member meronym

has part

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Hit@1 prediction accuracy per predicate, as achieved by the HypER+ model
with pre-trained GloVe word vectors on the WN18RR test set. It should be noted
that the predicates are not evenly distributed in the dataset; “hypernym” and “deriva-
tionally related from” respectively account for about 40% and 35% of all triples in
WN18RR.

For illustrative purposes we show in Table 5 a handful of incorrect test set
predictions from our HypER+ model with pre-trained word vectors. These ex-
amples are all for the predicate “has part”, which according to Figure 1 seems
difficult to model accurately. Our model does demonstrate basic conceptual un-
derstanding, as most of these mistakes could be deemed forgivable. We would
therefore expect reasonable knowledge discovery utility from the model, when
used jointly with information retrieval for open-domain question answering.
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Table 5. Examples of incorrect predictions made by our HypER+ model with pre-
trained word vectors on the WN18RR test set.

Subject Predicate Target object Predicted object

usa has part colorado missouri river
spain has part cadiz jerez de la frontera
electromagnetic spectrum has part actinic ray radio spectrum
systema respiratorium has part respiratory tract respiratory organ
africa has part nigeria senegal
antigen has part substance epitope
amphitheatre has part theatre tiered seat
indian ocean has part mauritius antarctic ocean

5 Conclusions

Neural tensor factorisation has shown promise in extending the performance of
latent feature modelling based link prediction in knowledge graphs. The origi-
nal insight to apply tensor decompositions to relational modelling gave rise to
a number of increasingly performant models, and ultimately to our proposed
HypER+ model.

There remains an open question as to the extent to which representation
structure can continue to improve performance. HypER [16] for example ex-
tends the concept of multi-dimensional inputs proposed by ConvE [15], by gen-
erating relational matrices as opposed to relying on relational vectors. A natural
further extension is generating entity matrices, and then potentially tensor rep-
resentations for both. Such dense representations may better capture entity and
relational concepts. The application of alternative entity-relation feature interac-
tion operators is another natural extension. It has been demonstrated [14, 11, 15]
that the Hermitian dot product, circular correlation and convolution operators
have potential. An as yet unexplored avenue is the use of stochastic operators
that directly encode uncertainty, and may produce relational score probabilities
with more appropriate confidence measures.

Some progress in link prediction was recently achieved using the graph mod-
elling paradigm. State-of-the-art Hit@1 accuracy of 46% was achieved on FB15k-
237 by Nathani et al. [30], compared to an accuracy of 25.5% achieved by our
HypER+ model with pre-trained word vectors. Such a staggering improvement
is however not realised on WN18RR, with the model of Nathani et al. achieving
a Hit@1 accuracy of 36.1% compared to our model’s 43.5%. But these graph
modelling approaches clearly demonstrate potential in pushing link prediction
performance forward. Their strength could be exploiting a similar idea to the one
used to construct the GloVe language model, incorporating both local and global
context. Inductive probabilistic logic programming (IPLP) also shows promise
[31, 32], although research in this paradigm is much more sparse. It would seem
graph modelling, as opposed to latent feature modelling, may provide the biggest
contribution to link prediction in the near-term.
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