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Abstract—An image can be described by the objects within
it, as well as interactions between those objects. A pair of
object labels together with an interaction label is known as a
visual relationship, and is represented as a triplet of the form
(subject, predicate, object). Recognising visual relationships in a
given image is a challenging task, owing to the combinatorially
large number of possible relationship triplets, which leads to an
extreme classification problem, as well as a very long tail found
typically in the distribution of those possible triplets. We investi-
gate the effects of three strategies that could potentially address
these issues. Firstly, instead of predicting the full triplet we opt
to predict each element separately. Secondly, we investigate the
use of shared network parameters to perform these separate
predictions in a multitask setting. Thirdly, we consider a class-
selective batch construction strategy to expose the network to
more of the many rare classes during mini-batch training. Our
experiments demonstrate that batch construction can improve
performance on the long tail, possibly at the expense of accuracy
on the small number of dominating classes. We also find that a
multitask model neither improves nor impedes performance in
any significant way, but that its smaller size may be beneficial.

Index Terms—visual relationship recognition, batch construc-
tion, multitask learning

I. INTRODUCTION

There exists a variety of effective methods for locating and
labelling objects in an image [1], [2]. A subsequent task in the
image understanding pipeline could be to label the interaction
or relationship between different objects. A visual relationship
is defined as a triplet of the form (subject, predicate, object)
that describes some visible interaction between a pair of ob-
jects in an image. The image in Figure 1, for example, contains
the visual relationship (boy, on top of, surfboard). Such
visual relationships can be used to construct a scene graph
representation of an image [3], for further visual reasoning in
tasks such as image retrieval, visual question answering, and
automated surveillance.

Visual relationship recognition is the problem of producing
(subject, predicate, object) triplets for a given image. It is
often coupled with object localisation, but the focus of this
paper is on the labelling task and we will therefore assume
knowledge of tight bounding boxes around pairs of objects.
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Visual relationship
subject: boy
predicate: on top of

object: surfboard

Fig. 1. An example of visual relationship recognition. The task is to label
the subject, predicate (relationship) and object, given an image and bounding
boxes around a pair of objects.

Bounding boxes around objects can be generated by an off-
the-shelf object detector (e.g. [1]) and merged pairwise in a
straightforward manner.

Visual relationship recognition is challenging for a num-
ber of reasons. Firstly, the number of possible relationships
explodes combinatorially and leads to what is known as an
extreme multiclass classification problem. For example, 100
possible subject and object labels, and 70 possible predicates,
amount to 700,000 possible triplets. Secondly, the distribution
of visual relationships in a dataset would typically exhibit a
long tail: the vast majority of possible triplets might occur only
a few times (or never) in the training set, while a small number
might be frequent. Thirdly, predicates tend to be slightly more
abstract than the subjects and objects, making their visual
representations more difficult to model and recognise.

We investigate a number of strategies to deal with these
issues. To address the combinatorially large set of possible
classes, we design models that separately predict the elements
of a triplet, instead of a single prediction of the complete
triplet. This strategy allows for a multitask design where the
different elements can be predicted with shared model param-
eters, potentially resulting in inductive transfer and statistical
data amplification [4] for improved generalisation. For model
training we also implement selective mini-batch construction
through a type of training data distribution search, in an
effort to better capture the long tail of the distribution over
visual relationships. We compare the performance of our batch
construction strategy against standard uniformly random batch



sampling, and also of our multitask model against multiple
single-task models. The contributions of this work can be
summarised as follows:
1) we show that batch construction is useful as a simple
strategy for improved performance on underrepresented
relationships (the long tail of the distribution);

2) we demonstrate that multitask learning is effective at re-
ducing model complexity, without a significant positive
or negative impact on performance.

II. RELATED WORK

The literature on visual relationship recognition can be
grouped broadly into three common approaches. The first
involves the learning of a visual-semantic embedding space.
This can be achieved by imposing criteria such as small
distances between similar relationships [5], or by modelling
a relationship as vector translation between embedded objects
[6], or by minimising a triplet-softmax loss [7]. Visual-
semantic embedding allows for few- and zero-shot learning,
and could therefore be suited for modelling a long-tailed
distribution, but a separate classifier would still need to be
trained on top of the embedding.

The second common approach attempts to generate the
scene graph, or collection of interconnected relationships,
directly. Xu et al. [8] perform graph inference with a structural
recurrent neural network and an iterative message passing
scheme to refine its predictions. Zellers et al. [9] observe
that natural images usually have certain kinds of structural
regularities, which they dub motifs, and propose stacked neural
networks (“MotifNets”) to predict graph elements and an
LSTM to encode global context. Further examples of this
approach include the use of associative embeddings [10],
graph parsing neural networks [11], and graph R-CNN [12].
Woo et al. [13] improve on graph generation strategies by de-
signing an explicit relational reasoning module. Generating a
scene graph is more direct than the visual-semantic embedding
approach, and end-to-end training to accomplish the intended
task directly can lead to superior performance.

The third approach, and the one most relevant to our work,
treats the prediction of each element of the relationship triplet
as its own classification task. Some works use multi-stream
architectures for each task [14]-[17], while others employ a
single multitask scheme [18], [19] similar to what we will
investigate.

There seems to be a central theme of transferring knowledge
for improved performance, through message passing, global
context cues, or inductive transfer in multitask learning. The
multi-stream and multitask settings can deal with the huge
number of classes in visual relationship recognition, by making
use of multiple outputs of smaller dimensions. It does remain
unclear whether multitask learning could necessarily provide
better performance. Existing approaches also tend to build very
large systems, with many parameters, and it is usually not
clear exactly how the long tail of typical datasets are dealt
with. We have not yet come across approaches dealing with
data distribution searches during training.

III. OUR APPROACH

We want to train a model that takes an image as input,
cropped around a pair of objects, and outputs a (subject,
predicate, object) triplet. Training labels are used to define
fixed vocabularies for each element. We may therefore treat
visual relationship recognition as classification, and models
will be set up to output normalised class scores over triplets.
It may be noted that subjects and objects usually share a
vocabulary, but it is not a strict requirement.

Instead of attempting to train a convolutional neural network
to output one massive vector of scores over all possible
triplets, we consider three separate tasks: predicting the subject
label, predicting the predicate label, and predicting the object
label. Each of these tasks has far fewer possible classes,
and by making the simplifying assumption that the tasks are
conditionally independent given an image, we may combine
their normalised output scores through multiplication. The top
scoring triplet can then be obtained by combining the top
scoring elements from each of the three tasks.

We note that typical datasets for visual relationship recog-
nition exhibit a long tail not only in the distribution over all
triplets, but also in each of the marginal distributions over
subjects, predicates and objects. An example of this behaviour
follows in section IV-A.

A. Single-task learning with standard batching

We create three separate neural network models to predict
the subject, the predicate and the object from the same image.
Each network consists of the convolutional block of a pre-
trained network (we chose ResNet-18 [20] for its good balance
between size and performance), followed by three trainable,
2,048-dimensional fully-connected layers and a softmax output
layer. Refer to Figure 2.

In order to train each model we minimise a cross-entropy
loss function with mini-batch gradient descent [21]. For each
training iteration a mini-batch of some prespecified size is
sampled without replacement, uniformly across all samples
in the training set. For visual relationship recognition where
the data is often heavily skewed, this “standard” approach to
batch selection is likely to pick samples mostly from a small
number of frequently occurring classes. The network may thus
learn these dominant classes very well, but would be unable
to recognise the vast majority of classes in the long tail of the
data distribution.

B. Class-selective batch construction

In an effort to mitigate the potential problem with standard
batching mentioned above, and expose the network to more
classes in the tail of the dataset, we implement the following
batch construction strategy. For a particular task (which can be
to predict the subject, or to predict the predicate, or to predict
the object), we sample at every training iteration n classes
from the vocabulary of that task, uniformly at random. We
then randomly select m samples from each of those n classes,
for a mini-batch of size mn.
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Fig. 2. For single-task learning we construct three separate models to predict
respectively the subject, predicate and object from a given image crop. The
trainable fully-connected layers all have 2,048 neurons and the output is a
softmax over the classes of each task.
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Fig. 3. For multitask learning we construct a single model to output three
score vectors over the subject labels, predicate labels and object labels. The
shared and separate fully-connected layers all have 2,048 neurons and the
outputs all use softmax.

Constructing batches in this manner would allow the net-
work to learn from all the classes in a particular task, in equal
measure. We hypothesise that it can lead to better performance
on the many rare classes in the long tail of the data, potentially
at the expense of reduced performance on the small number of
dominant classes. Of course, there is now a risk of biasing the
network against the true distribution of the data and impede
its ability to generalise properly. We investigate these issues
experimentally in section IV.

C. Multitask learning

In addition to batch construction we also explore multitask
learning, which can be thought of as an inductive form of
transfer learning where knowledge is transferred across tasks.
The premise is that it might lead to a more robust model,
capable of generalising better [4].

In our case we may use a single network with multiple
output vectors, instead of multiple networks each performing
a single task. Specifically, we use the convolutional base
of ResNet-18, add two trainable, 2,048-dimensional fully-
connected layers, and then split the network to three parts.
Each part has its own 2,048-dimensional layer and a softmax
output over the subjects, predicates and objects, respectively.
Figure 3 clarifies. The first two fully-connected layers are thus
shared and might learn effectively from the three different
tasks. The network is trained to minimise the sum of cross-
entropy losses over the three output vectors, using mini-batch
gradient descent.

In multitask learning it is generally common to define a
main task together with auxiliary tasks which could be less
important. For our visual relationship recognition model we
may want to regard each of the three tasks equally important.
However, when coupled with batch construction (as described
in section III-B), we have to sample the m classes from a
single task, at every training iteration, and then use the triplets
from the complete labels of the training samples in the batch.
In section IV we explore how performance of the multitask
model changes depending on which task is used for batch
construction.

D. Implementation

All models are implemented in the PyTorch framework
[22]. For standard batching we use a batch size of 300. For
class-selective batch construction we choose m = 6 and
n = 50. There could a trade-off in performance between
the number of classes and sampled instances per class, but
informal experimentation showed no significant difference for
our models (which might be somewhat surprising, although
it could be that effects average out over multiple batches).
Mini-batch gradient descent is performed using Adam with
a learning rate scheduler. We make use of mixed precision
training via NVIDIA Apex, to enable more optimal use of
GPU memory. All training is performed on a single NVIDIA
GeForce RTX 2070.

IV. EXPERIMENTAL RESULTS
A. Data

We use the VRD dataset of Lu et al. [5]. It contains 5,000
images, and a total of 37,987 relationship instances (triplets)
that we split into a training set and a test set (80:20). More
specifically, in an effort to ensure representativeness in both
sets, we consider each class ¢ of predicates and split the subset
of triplets that has ¢ as a predicate into 80% training data and
20% test data. We chose to base the split on the predicate,
since it has fewer samples per class in the tail.
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Fig. 4. Plots of the number of relationship instances containing each subject label, predicate label and object label, across the entire VRD dataset [5].

Each predicate is an action verb (e.g. kick), a non-action
verb (e.g. wear), a spatial relationship (e.g. on top of), a
preposition (e.g. with), or comparative (e.g. taller than).

There are 100 labels shared between subjects and objects,
and 70 labels for predicates, for a total of 700,000 possible
(subject, predicate, object) triplet labels. We note that our
training set contains only 15,448 unique triplets. However, the
manner in which the models are set up to output subject, pred-
icate and object separately, potentially enables the recognition
of triplets never seen during training.

The long-tailed nature alluded to throughout this paper
exists in this dataset not only at the relationship triplet level,
but also at the level of subjects, predicates and objects, as
shown in Figure 4.

B. Evaluation metrics

We evaluate the performance of the various models first
in terms of predicting each of the three elements of a visual
relationship, then in terms of predicting the triplet as a whole.

A standard metric for visual relationship recognition is the
recall at k, abbreviated as R@k and sometimes called the top-%
accuracy, which measures the percentage of times the correct
label occurs in the top k predictions (if ordered by output
scores). For the tasks of predicting individual elements, i.e.
looking only at the output over subjects, or over predicates or
over objects, we measure R@1 and R@3 on the test set. For
the task of predicting the full (subject, predicate, object) triplet,
we measure R@50 and R@100 which seem to be standard
practice for a label set of this size [5], [6], [8], [10]. Keep
in mind that there are 700,000 possible triplets that can be
predicted. We found that a random classifier yields an R@100
score of approximately 0.026% on the skewed test set.

In order to evaluate how effectively each model deals with
the many rare classes in the tail of the data distribution,
we also measure the mean per-class accuracy, abbreviated as
MPCA, over the test set. This metric effectively ignores class
imbalance. Note that we use this metric only to evaluate the
prediction of single elements (subjects, predicates or objects),
and not the prediction of full triplets. The large number of
possible triplets, and the fact that relatively few of them appear
in the test set, make MPCA less informative in this setting.

For an indication of how the models fare on only the rare
classes, we construct a subset of the test set by keeping only

those triplets for which the subject, predicate and object each
have fewer than 1,000 instances across the full dataset (refer
to Figure 4). We use counts over the full dataset merely as
a proxy for rarity, and remind the reader that elements in the
training set are distributed similarly to those in the full set.

C. Quantitative evaluation

Results from the various models are presented in Table I,
for the three tasks of predicting subject, predicate and object
over all the samples in the test set.

Based on the MPCA metric we may note that class-selective
batch construction improves performance on the long tail-end
of each individual task, but only if batches are constructed
through the sampling of classes from the same task. Lower
accuracies from all models for the prediction of predicates
verify our suspicion that predicates are harder to recognise
visually. Furthermore, we note that multitask learning does
not seem to significantly improve or worsen mean per-class
accuracy on the prediction of individual elements. Generally
speaking, it is not yet clear under which circumstances a
multitask model will improve performance, but there are
arguments suggesting that more uniform label distributions in
the auxiliary tasks might be preferred for multitask learning to
be effective [23]. In our case, the multitask models do provide
similar performance to the multiple single-task models, which
is useful if limitations on model size and complexity are
important. Reduced model capacity can also act as a form
of regularisation.

The results in Table I also indicate higher R@1 and R@3
scores for models trained with standard batching compared to
those that implement batch construction. There seems to be a
trade-off: batch construction contributes to better generalisa-
tion on the many rare classes, at a cost of lower accuracy on
the small number of dominant classes.

Table II shows evaluation results from the different models
predicting full (subject, predicate, object) triplets. We report on
R@50 and R@100, as is standard in the literature, and remind
the reader that there are 700,000 possible classes in this case.
Our obtained results are quite similar to related work, but since
we focus only on the labelling of visual relationships, and not
also the localisation of individual objects, a direct comparison
would not mean much.



TABLE I
QUANTITATIVE TEST RESULTS FROM VARIOUS VERSIONS OF OUR MODELS, ON PREDICTING SINGLE ELEMENTS OF VISUAL RELATIONSHIPS.

Model Description Predicting the subject Predicting the predicate Predicting the object
MPCA R@I R@3 | MPCA R@I R@3 | MPCA R@I R@3
ST-SB single-task, standard batching 19.09 5329 73.63 451 3196 5677 | 2892 40.23  68.17
ST-BC-S single-task, batch construction from subject labels 33.13 16.14  39.39 4.13 19.26 4136 | 2244 3820 63.74
ST-BC-P single-task, batch construction from predicate labels | 16.70  49.55 68.86 | 17.01 10.78  31.72 | 2520 3499 61.50
ST-BC-O single-task, batch construction from object labels 16.67 52.66  71.43 5.24 2793 5139 | 40.72  26.62  50.58
MT-SB multitask, standard batching 1996 5344 74.62 4.74 3224 57.12 | 2834  40.03  68.94
MT-BC-S | multitask, batch construction from subject labels 32.83  17.37 4341 4.09 1935 40.70 | 2246 3846 6492
MT-BC-P multitask, batch construction from predicate labels 17.18 50.26 70.95 17.54 12.71 32.39 26.24 35.59 62.65
MT-BC-O | multitask, batch construction from object labels 17.52 53.05 72.08 6.27 28.34 52.06 | 40.60 27.33 51.91

TABLE I
QUANTITATIVE TEST RESULTS FROM THE MODELS, ON PREDICTING FULL
VISUAL RELATIONSHIP TRIPLETS.

Model Predicting the full triplet
R@50 R@I00 [ Tail R@50 Tail R@100

ST-SB 49.18 58.18 13.10 17.74
ST-BC-S 23.87 30.84 20.96 27.82
ST-BC-P 31.79 42.10 16.93 23.58
ST-BC-O 40.66 48.58 18.95 24.59
MT-SB 50.27 59.69 12.50 18.95
MT-BC-S 24.95 32.37 19.35 27.21
MT-BC-P 33.56 44.08 17.94 26.41
MT-BC-O 41.83 49.47 20.76 26.20

As before, standard batching produces better recall at 50 and
100 compared to batch construction. However, when focusing
only on the long tail of the distribution (as explained at the end
of section IV-B), we find that batch construction does offer an
improvement.

One may postulate that the predicate is most representative
of the visual relationship, but it appears from our experiments
that batch construction with the object labels is a better
strategy. The ResNet-18 layers might have an influence here,
since they have been pretrained for object classification and
thus potentially less suited for the more abstract concept of a
predicate.

A fundamental difference between the single- and multitask
setting is that the latter receives a training signal from every
element of the visual relationship triplet simultaneously. In
some sense it sees the full visual relationship, yet does
not yield significantly better scores compared to the single-
task setting. Again, this shows that it is not immediately
obvious that multitask learning will give improved metrics,
and corroborates previous findings [23].

A significant drawback of these quantitative evaluations is
that they compare model predictions to a particular ground
truth label, despite the fact that visual relationships are often
ambiguous and a prediction different from the ground truth
might not be completely wrong. We explore this briefly in the
next section.

D. Qualitative evaluation

Table III shows a number of test image samples and the top
five predicted triplets from four of the models. Here we choose

to highlight batch construction based on the object labels, since
it performed best overall in the quantitative evaluations.

For the second example shown in the table, (giraffe,
taller than, giraffe), ST-BC-O correctly predicts the
subject and object but predicts in front of as the predicate;
perhaps a forgivable error. Similarly sensible errors can be
seen throughout the examples, and demonstrate a level of
ambiguity often present in visual relationship labels. The
predicates behind and in front of do appear with very
different confidence scores. This is undesirable behaviour that
a human would not display, and might motivate the inclusion
of multi-modal semantics in the modelling process.

We note that person is the dominating subject class, and
is predicted correctly in almost all cases shown. In the third
example of Table III models favour predicates other than on,
despite it being the dominating predicate class. This may be
due to the strong visual cues in favour of interactions between
the person and their items of clothing, rather than the slightly
more obscure skateboard.

Models trained with batch construction appear to make
predictions with relatively high confidence scores. There are a
total of 700,000 normalised confidence scores, so high scores
in the top five predictions mean exceptionally low scores
for the remaining 699,995 relationships. It is interesting that
under an arguably more uniform training data distribution, the
confidence scores are this heavily skewed.

The ground truth predicate of the last example in Table III,
namely feed, is a rare tail-end predicate and is misclassified
even under our batch construction strategy. The predicted
predicates do seem sensible with regards to the visual cues
in this example, and further motivate an investigation into
semantic modelling.

V. CONCLUSION

We investigated the potential of class-selective batch con-
struction and multitask learning for the task of visual re-
lationship recognition. It is a challenging task in computer
vision, given the large number of possible relationships as
well as a typical long-tail distribution over those relationships.
We saw that our batch construction strategy does improve
performance on the tail of the distribution, but at the cost of
performance on the small number of dominating classes at the
head of the distribution. Multitask learning does not seem to



TABLE III
QUALITATIVE RESULTS FOR A FEW TEST IMAGES.

Test image

l

Top 5 triplet predictions and confidence scores

| ST-SB ST-BC-O MT-SB MT-BC-O
person, on, horse 12.0 | person, on, horse 18.7 | person, wear, horse 9.3 | person, on, horse 13.2
person, ride, horse 7.0 | person, has, horse 11.8 | person, on, horse 6.8 | person, above, horse 12.0
person, wear, horse 5.3 | person, wear, horse 7.7 | person, wear, person 3.4 | person, behind, horse 6.3
person, has, horse 5.2 | person, in front of, horse 4.3 | person, behind, horse 3.1 person, ride, horse 53
person, on, person 3.1 person, next to, person 3.7 | person, has, horse 2.6 | person, has, horse 4.8
giraffe, taller than, giraffe 25.1 | giraffe, in front of, giraffe 98.6 | giraffe, taller than, giraffe 45.4 | giraffe, in front of, giraffe 92.5
giraffe, in front of, giraffe ~ 20.8 | giraffe, taller than, giraffe 0.4 | giraffe, in front of, giraffe ~ 18.9 | giraffe, taller than, giraffe 6.0
giraffe, next to, giraffe 9.5 | giraffe, behind, giraffe 0.4 | giraffe, next to, giraffe 8.6 | giraffe, behind, giraffe 0.9
giraffe, above, giraffe 7.6 | giraffe, next to, giraffe 0.1 giraffe, behind, giraffe 7.3 | giraffe, next to, giraffe 0.3
giraffe, behind, giraffe 7.2 | giraffe, beside, giraffe 0.1 | giraffe, under, giraffe 2.6 | giraffe, beside, giraffe 0.07
person, wear, person 11.8 | person, wear, skateboard 25.6 | person, wear, shirt 15.5 person, wear, skateboard 20.0
person, wear, shirt 10.5 | person, on, skateboard 10.0 | person, wear, person 9.6 | person, wear, shoes 14.0
person, wear, skateboard 10.0 | person, has, skateboard 9.6 | person, wear, skateboard 6.9 | person, wear, helmet 12.0
person, wear, shoes 5.4 | person, ride, skateboard 5.2 | person, wear, shoes 6.1 person, has, skateboard 3.8
person, wear, pants 4.4 | person, wear, shoes 3.5 | person, wear, pants 4.1 person, wear, pants 3.7
person, above, street 4.3 | person, under, elephant 16.4 | person, on, street 4.7 | person, in front of, elephant 7.4
person, on, street 4.1 | person, in front of, elephant  16.0 | person, under, street 3.9 | person, near, elephant 6.9
person, under, street 3.0 | person, above, elephant 10.0 | person, above, street 3.4 | person, under, elephant 5.1
sky, above, street 1.7 | person, near, elephant 4.7 | person, on, person 2.4 | person, on, elephant 34
sky, on, street 1.6 | person, behind, elephant 4.1 person, under, person 1.9 | person, above, elephant 2.4
The ground truth relationships for these test images are (a) person, on, horse; (b) giraffe, taller than, giraffe; (c) person, on, skateboard; (d) person, feed, elephant.

improve or impede performance when compared to the single-
task learning, but provides other benefits such as a reduced
model capacity. We also saw that it is more difficult to model
and recognise the predicate of a relationship, and suggest that
current pretrained models might not be suitable for that task.
Finally we demonstrated through a few examples that some
misclassifications are semantically similar to the ground truth
labels, suggesting that the incorporation of a language model
may be useful.
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