
Learning fine-grained control for mapless navigation
Fred de Villiers

Applied Mathematics
Stellenbosch University

Stellenbosch, South Africa
20326033@sun.ac.za

Willie Brink
Applied Mathematics

Stellenbosch University
Stellenbosch, South Africa

wbrink@sun.ac.za

Abstract—We consider the problem of learning a control policy
that allows an autonomous mobile robot to navigate safely to
target positions in an environment, without access to an obstacle
map. The policy can operate in environments of arbitrary size and
may be deployed in resource-constrained settings where storing
and maintaining an accurate map are infeasible or prohibitively
expensive. The learned policy, trained end-to-end using deep
reinforcement learning, outputs continuous control commands to
the actuators of a simulated two-wheel differential drive robot. A
new reward function is proposed to encourage the robotic agent
to learn local recovery and exploration behaviours, which greatly
improves the ability of the agent to solve challenging navigation
tasks in new environments. The performance of the learned policy
is compared to an agent equipped with full knowledge of the
obstacle map. Even though the learned policy may solve many
navigation tasks, we conclude that some tasks still require the
use of a global path planner. However, coupled with a high-
level path planner to provide intermediate target beacons to the
goal, the learned policy may be employed as an effective low-level
component with reactive collision avoidance behaviours and local
navigation skills in static or dynamic environments.

Index Terms—autonomous mobile robots, mapless navigation,
deep reinforcement learning, continuous control

I. INTRODUCTION

One of the fundamental tasks of autonomous mobile robots
is to navigate towards a target position in an environment,
without colliding into obstacles. Once a path to the goal has
been determined, the robotic agent has to engage the appro-
priate actuators to execute motion in the desired direction.
Conventional methods usually solve these tasks by building a
map of the environment. We consider the case where the agent
does not have access to a map. Foregoing the use of a map
will make certain situations harder to solve. One advantage,
however, is that the cost of storing and maintaining a map is
removed, which means that the agent may operate in arbitrarily
large environments. Many real-world situations also make the
construction and maintenance of an accurate map infeasible,
for example when the agent is only operational for a short
time, or when the environment is highly dynamic.

We assume that an oracle provides the agent with only the
position of the target relative to the agent’s local reference
frame. In practice, this may be calculated with a high degree
of precision using GPS coordinates in exterior environments,
or WiFi localisation in interior environments [1].

Conventional approaches to navigation depend on human
expert knowledge of the dynamics of the environment, and
of the locomotive system of the robotic agent. An alternative
approach is to apply reinforcement learning, where the agent
learns to act appropriately in the environment from past
experience, without access to a model of the dynamics of the
environment or a human expert’s domain knowledge. The rein-
forcement learning paradigm mimics the dopaminergic system
in animals by rewarding the agent when it accomplishes a
goal and punishing the agent if it reaches an undesired state
[2]. The agent perceives the state of the environment and
learns to infer the reward it would expect to receive by taking
certain actions, thereby learning the desired control policies
to reach the navigation goals. An advantage of this learning-
based approach is that the agent may learn general skills that
could translate to environments and circumstances unforeseen
by a human expert. In addition, once an effective general
learning architecture is created it may potentially be reused for
different sensor and actuator combinations by simply swapping
out the sensorimotor inputs and outputs.

The specific problem we consider is the development of a
continuous control policy at the actuator level of a two-wheel
nonholonomic differential drive robot equipped with a sparse
array of laser rangefinders, to reach a target in the environment
without access to (or maintenance of) a map. Environments
consist of flat surfaces contained in enclosed spaces, similar
to a single floor of an office building.

II. RELATED WORK AND CONTRIBUTIONS

Many reinforcement learning approaches simplify matters
by sampling from a predetermined discrete set of actions.
Instead, Tai et al. [3] trained a simulated robot to take actions
in a continuous space in order to maplessly navigate to a target,
using deep reinforcement learning [4]. Fan et al. [5] showed
that an agent trained with a similar approach can learn effective
reactive collision avoidance policies by training in highly
dynamic crowded environments. However, the environments
and sequence of targets chosen to test these learned policies
did not pose much of a challenge.

Zhelo et al. [6] augmented a similar planner with a curiosity
model [7] and a limited memory in the form of an LSTM layer
in the learning architecture. Their agent was tested in new
environments not seen during training, with challenging layout

elements. Extracted features were specific to the training map
and did not always transfer to new environments successfully.
All of the approaches mentioned rely on a platform-specific
controller to translate high-level movement commands, in
the form of the linear and angular velocities of the chassis,
into actuator activations that control the continuous angular
velocities imparted on the wheels of the robot.

Our main contribution is the design of a reward function
that aids the agent to learn local recovery and exploration
behaviours if there is no clear path to the goal. A further
improvement over existing work is that the learned policy will
set the angular velocities of the wheels directly. Mechanisms
that implicitly learn the features of the training environment
will not be considered, since resulting policies often do not
transfer well to new environments.

III. FORMULATION OF THE LEARNING PROCESS

The agent-environment interaction is formulated as a
Markov decision process (MDP) [2]. The agent’s starting
position is determined according to an initial state distribution
p(s1). At each discrete time step t, the agent observes the
state of its environment from the state space S, in the form
of k rangefinder readings fanned out at equal angles in front
of the agent, denoted by xt = [x1, x2, . . . , xk]

T . This is
augmented with the distance dt and angle φt to the target
relative to the agent’s local reference frame, along with the
current angular velocity of each wheel at−1 = [ϕL, ϕR]

T , to
form the state st = [xt, dt, φt,at−1]

T . The agent then selects
an action at = [ϕL, ϕR]

T , consisting of the angular velocities
applied to the left and right wheel, from the action space
A. It is assumed that the agent may not move backwards,
therefore ϕL, ϕR ∈ [0, ϕmax]. The angular wheel velocities
result in the linear and angular velocity of the agent’s chassis,
bringing it to a new position according to the transition
distribution p(st+1|st,at) of the environment. This distribution
is stationary and satisfies the Markov property:

p(st+1|s1,a1, s2,a2, . . . , st,at) = p(st+1|st,at), (1)

for any trajectory. Finally, the agent receives a scalar reward
to encourage or punish the selected action in the current state
according to a reward function r : S ×A → R.

The agent’s goal in the MDP is to select at each discrete
time step an action that maximises the expected discounted
return. The reward received at time step t is denoted by Rt,
and the discounted return Gt is defined as the discounted sum
of rewards:

Gt , Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . .)

= Rt+1 + γGt+1.

(2)

The discount factor γ ∈ [0, 1) determines whether the agent
only values immediate rewards, when γ = 0, or whether it
takes a longer-term view, as γ approaches 1. A bootstrapped
estimate of the recurrence obtained in (2) will serve as a target
label during training.

The agent selects an action according to a stochastic policy
πθ : S → P(A) that maps states to probabilities of selecting
each possible action, producing a trajectory of states, actions,
and rewards: h1:T = s1,a1, r1, s2,a2, r2, . . . , sT ,aT , rT . The
goal is to learn a policy that maximises the agent’s reward.
The conditional probability density associated with the policy
and parameterised by θ is written as

πθ(a|s) = p(at = a | st = s). (3)

The action-value function qπ(s,a) is defined as the expected
value of the discounted return, by taking an action a, from a
state s, under the policy πθ:

qπ(s,a) , Eπ
[
Gt
∣∣ st = s, at = a

]
= Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣ st = s, at = a

]
.

(4)

A good approximation of the action-value function will allow
the agent to estimate the best action given any input state, by
maximising over a. However, the agent moves by engaging
its actuators to impart continuous angular velocities onto
the wheels, and maximising qπ(s,a) over a continuous set
of actions is computationally infeasible. One option is to
discretise the action space, but fine control of actuators needs a
fine-grained discretisation in multiple dimensions which may
lead to an intractably large set of actions.

To train a policy capable of outputting continuous actions,
the deep deterministic policy gradient (DDPG) algorithm [4]
is employed. It consists of two deep neural networks: an
actor and a critic. The critic network Q(s,a | θQ) is used as a
nonlinear function approximator to estimate the action-value
function qπ (the Q-value of a given state-action pair), whereas
the actor network µ(s|θµ) serves as the policy network,
mapping an action to a state. A target network is maintained
for both the actor and the critic to ensure stable convergence
during training [8], denoted by Q′ and µ′ with initialised
parameters θQ

′ ← θQ and θµ
′ ← θµ, respectively [4].

State transitions are stored in a replay memory M and
mini-batches of N transitions are sampled uniformly from the
memory [8]. For each transition i, the improved estimate of
the discounted return is given by

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
) | θQ

′
), (5)

using the target critic (value) and actor (policy) networks.
The online value network is updated by minimising the

mean squared error between the improved estimate of the
discounted return and the current estimate of the Q-value:

L(θQ) =
1

N

∑
i

(
yi −Q(si,ai | θQ)

)2
. (6)

The objective to update the policy network is to maximise the
expected return

J(θ) = E
[
Q(st,a)|a=µ(st)

]
. (7)

The deterministic policy gradient, or the gradient of the
policy’s performance, is obtained by applying the chain rule to

calculate the derivative of the objective function with respect
to the policy parameter:

∇θµJ(θ) ≈ ∇aQ(st,a|θQ)|a=µ(st)∇θµµ(st|θ
µ), (8)

as proved by Silver et al. [9]. The policy network is updated by
calculating the mean of the policy gradients in the mini-batch:

∇θµJ(θ) ≈
1

N

∑
i

∇aQ(si,a|θQ)|a=µ(si)∇θµµ(si|θ
µ), (9)

to perform stochastic gradient ascent (since the policy seeks
to maximise the expected return).

In order to balance stable target labels with accuracy, a
soft update is applied to the weights of the target networks
to slowly track the online networks during training [4]:

θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′
,

(10)

where 0 < τ � 1.

IV. EXPERIMENTAL DESIGN

This section details our simulation environment, the pro-
posed reward function, exploration policies, network architec-
tures, as well the training and testing procedures.

A. Simulator

The use of an existing simulation platform was considered,
but a simpler task-specific simulator of our own construction
offered easier control of the model parameters and sped up
training times. Figure 1 shows the agent and target as circles
in the simulated training environment, with the agent’s sparse
array of rangefinder rays hitting obstacles.

To make the learned policy more robust to possible slippery
surfaces or variance in the actuators, noise was sampled from
a bivariate Gaussian distribution N (0, σ2

aI), and added to at.
This noisy input was fed to the kinematic model used by the
simulator to form the transition model for training and testing.

Fig. 1. The simulated two-wheel differential drive robot (blue dot) and target
beacon (red dot) in an enclosed training environment. Blue rays represent
rangefinder measurements. Input noise may be observed where the rays
penetrate beyond the borders of obstacles or do not quite reach obstacles,
as highlighted.

Note that the agent has no access to the kinematic model at
any stage during the learning or testing process. The agent
learns policies by observing and estimating the consequences
of engaging its actuators in this unobserved model.

In industrial settings rangefinders are typically accurate to
within 1% to 3%. To simulate this, input noise was sampled
from a k-dimensional Gaussian distribution N (0, σ2

sI), and
added to xt. All distances were scaled so that each pixel on
screen corresponds to one centimetre. The maximum distance
measured by the sensors in the simulator was set to 4.0m. The
components of st were normalised to take on values in [0, 1]
before being fed into the neural networks.

B. Reward function

Typical reward functions in the literature are variants of the
function defined by Tai et al. [3]:

r(st,at) =

rfound if dt = 0,

rcrash if dobs = 0,

β1(dt − dt+1) otherwise,
(11)

where the agent’s distance to the nearest obstacle is denoted
by dobs = mini∈{1,2,...,k}(xi). The agent receives a positive
or negative terminal reward on success or failure, respectively,
and an intermediate reward proportional to the change in the
distance dt to the target. The hyperparameter β1 is usually
chosen to scale the magnitude of the intermediate rewards to
some fraction of the terminal rewards. This reward function
is rich in information, but the agent will be reluctant to move
away from the target to negotiate a path around an obstacle if
that is the only way to make progress.

We propose a new reward function that does not punish
the agent for moving away from the target. Instead the
agent is encouraged to learn local recovery and exploration
behaviours to find paths around obstacles. The magnitude of
the instantaneous linear velocity of the agent is calculated as
vt = 1

2ρ(ϕL + ϕR), where ρ represents the radius of the
wheels, and the reward function is defined as:

r(st,at) =

rcrash if dobs = 0,

runsafe if dobs < dsafe,

β1 max{0, dt − dt+1}+ β2vt otherwise.
(12)

The agent no longer receives a terminal reward for reaching the
target. Apart from a terminal reward if the agent collides with
an obstacle, there is also a negative reward runsafe if it moves
too close to obstacles. The value of dsafe depends on the agent’s
turning circle. When the agent moves closer to the target it
receives a reward proportional to the change in distance to the
target, plus a reward proportional to its instantaneous forward
speed. Crucially, when the agent moves away from the target
it still receives a positive reward proportional to the forward
speed. In our experiments, the hyperparameters β1 and β2 were
chosen so that the maximum positive reward due to moving
closer to the target was 0.4 and the maximum positive reward
due to speed was 0.2, to ensure that the agent still preferred
approaching the target whenever possible.

Agents were trained using both of the reward functions
presented above, for comparison. In the sections that follow
the purely distance-based reward in (11) will be referred to as
the DB reward function, whereas our distance-based reward
augmented with a velocity term (12) will be called the DB-V
reward function.

C. Exploration during training

During training, exploration noise is added to the action
selected by the actor network µ(st|θµt). In robotic applications
noise is often sampled from an Ornstein-Uhlenbeck process
[11], which models the velocity of a massive Brownian particle
under the influence of friction. The process is defined by the
stochastic differential equation: dxt = θ(µ − xt) dt + σ dWt,
where Wt represents a Wiener process, or Brownian motion.
The Ornstein-Uhlenbeck process produces temporally corre-
lated noise that reverts to the long-term mean µ. The values
chosen for our experiments were µ = 0, θ = 0.15 and σ = 0.3.

A separate ε-greedy policy was also adapted for the con-
tinuous setting, where at each time step the agent takes a
random action with probability ε. The value of ε started at 1.0
and decayed exponentially to reach 10−2 by the last frame of
training. When the agent selected a random action, the angular
velocity of each wheel was sampled uniformly from [0, ϕmax].
Agents were trained using both of the exploration strategies
for comparison.

D. Learning architecture and hyperparameter selection

The architectures of the actor and critic networks are
presented in Figure 2. Both have three fully-connected hidden
layers with rectified linear unit (ReLU) activations to introduce
nonlinearity. Output values from the actor were constrained to
the range (−1, 1) by using the hyperbolic tangent (tanh) as
activation. The outputs were then linearly transformed to the
range (0, ϕmax).

The weight matrices and bias vectors of the hidden layers
of both networks were all initialised in the same way, similar
to the scheme presented in [4]. If n is the dimension of the
input to a layer, the layer’s weights and biases were sampled

(a) actor network

Input	(st)	|	15

Dense	|	512	|	ReLU

Dense	|	512	|	ReLU

Dense	|	256	|	ReLU

Dense	(at)	|	2	|	tanh

(b) critic network

Input	(st)	|	15

Dense	|	512	|	ReLU

Dense	|	512	|	ReLU

Dense	|	256	|	ReLU

Dense	(Q)	|	1	|	Linear

Input	(at)	|	2

Fig. 2. The structures of the actor and critic networks, each consisting of
three fully-connected hidden layers.

uniformly from [− 1√
n
, 1√

n
]. Initial weights and biases for the

output layers of both the actor and the critic were sampled
uniformly from [−3×10−3, 3×10−3] to ensure that the initial
Q-value estimates and velocities were close to zero.

The networks were trained using the Adam optimiser [12]
with a learning rate α = 10−4 and mini-batches of size 32.
The discount factor γ was set to 0.99. The soft update to the
target networks was implemented with τ = 10−3. It was not
necessary to perform any hyperparameter optimisation or grid
searches. Reasonable values based on similar work were used
in all cases. Smaller networks with fewer units per layer were
used for validation purposes, and then expanded trivially until
they produced smooth policies.

E. Training procedure

Four agents were trained for the final experiments: two
received the DB reward (11), and two received the DB-V
reward (12). One agent from each group followed an ε-greedy
exploration strategy, while the other sampled exploration noise
from an Ornstein-Uhlenbeck (OU) process [11]. The four
agents are labelled DB-ε, DB-OU, DB-V-ε, and DB-V-OU in
the discussions that follow.

The replay memoryM for storing transitions had a capacity
c = 106. An initial set of 50, 000 random transitions were
sampled in the training environment to pre-fill M.

All of the agents were trained for 7.5 million frames in
the training environment presented in Figure 1. The environ-
ment was chosen to pose a diverse set of challenges during
training. Both the agent and the target were spawned at
random positions at the start of each episode. If the agent
reached the target, a new beacon was spawned randomly in
the environment and the agent had to find the new target
from its current position. A training episode would end after
a maximum of 5, 000 frames, or as soon as the agent collided
with an obstacle.

F. Testing procedure

The performance of the fully trained policies were evaluated
not only in the training environment, but also in the four
test environments presented in Figure 3, to gauge whether the
learned policies could transfer to new environments. These test
maps, adapted from [6], are arranged more-or-less in order of
difficulty and confront the agent with structural elements not
encountered during training. Each contains potential starting
positions that will require the agent to move away from the
target in order to move around an obstacle. Some of the maps
have narrower doorways to enclosed areas. Test map 2 has
diagonal barriers not present in the training map. Test maps 3
and 4 have long wall sections that may require a long detour
to negotiate.

For each map, 300 random starting and target position pairs
were generated and all the trained policies were tested on this
fixed set of problems. The agents were given a maximum of
2, 500 steps to reach each of the target positions. The number
of steps taken was recorded for each problem as well as the
success rate of reaching the targets.

(a) Test map 1 (b) Test map 2

(c) Test map 3 (d) Test map 4

Fig. 3. The performance of the trained policies were tested in four test
environments offering challenges not encountered in the training environment.

V. RESULTS

The performance of the policies were compared to a global
path planner that had full access to the obstacle map. The
global path planner discretised the map and performed A*
search [13] to find the shortest path to the goal on a grid. A
DB-V-ε agent was augmented with the global path planner by
providing the agent with intermediate targets along the shortest
path to the final goal. This agent is labelled DB-V-Global.

Table I summarises the performance of the final policies
evaluated in the training and test environments, and the success
rate of each policy is plotted in Figure 4. All of the policies
fared well in the training environment and could solve almost
all of the tasks. The drop-off in performance of the mapless
policies in the test environments is expected, as each test map
contains potentially adversarial situations that are difficult for
a mapless policy to solve. The policies trained with our DB-
V reward function are clearly better than the DB policies
at reaching the targets, attaining success rate differentials of
between 8% and 23% depending on the difficulty of the tasks.
This translates into an increase in performance of 10% to 40%
over the DB policies.

The performance of the DB-V-OU and DB-V-ε policies are
very similar in the first three test environments. In the last
and most challenging test environment, however, the DB-V-ε
policy is clearly better. The fact that policies trained with ε-
greedy exploration perform better than their OU counterparts
may indicate that better values need to be found for the param-
eters controlling the exploration noise. It may also indicate that
the usual OU-based exploration strategies employed for policy
gradient methods may not always be optimal. In any case,
the ε-greedy policy may work well with the two-dimensional
action space considered here, but may not be as effective for
systems with more degrees of freedom.

Next we consider an instructive example in Figure 5, which
illustrates the main difference between the learned policies

TABLE I
EVALUATION IN TRAINING AND TEST ENVIRONMENTS.

Environment Reward- Success Steps
Exploration rate (%) (mean ± stddev)

DB-OU 86.67 568.50± 44.44
DB-ε 92.33 450.64± 35.81

Train map DB-V-OU 99.00 298.07± 15.39
DB-V-ε 99.67 285.87± 11.13

DB-V-Global 100.0 288.90± 13.22
DB-OU 75.67 831.12± 55.96

DB-ε 80.67 709.96± 51.63
Test map 1 DB-V-OU 90.33 530.83± 38.68

DB-V-ε 90.67 514.33± 38.57
DB-V-Global 99.33 327.62± 15.54

DB-OU 78.33 723.30± 53.60
DB-ε 82.67 634.28± 49.92

Test map 2 DB-V-OU 90.67 497.71± 39.58
DB-V-ε 93.00 432.02± 34.37

DB-V-Global 99.67 264.36± 8.39
DB-OU 55.67 1257.77± 64.33

DB-ε 65.00 1096.84± 61.46
Test map 3 DB-V-OU 86.33 731.03± 45.15

DB-V-ε 84.00 747.87± 46.90
DB-V-Global 97.67 410.98± 22.54

DB-OU 57.33 1227.33± 64.15
DB-ε 59.67 1184.91± 63.67

Test map 4 DB-V-OU 74.33 881.53± 56.24
DB-V-ε 83.00 746.85± 48.62

DB-V-Global 99.33 351.56± 13.65

using the various reward functions. The DB-V-Global agent
finds a near-optimal trajectory to the target, whereas both of
the mapless agents are tricked into a blind alley as they turn
the first corner at the top-right. The DB-ε agent is reluctant to
move away from the target and remains stuck in the corner.
The DB-V-ε agent, however, keeps exploring locally and in
this case loops back far enough to find its way to the target.

Finally, a task was designed to illustrate the limits of the
local recovery behaviour learned by the DB-V-ε policy (refer
to Figure 6). The DB-V-Global policy once again finds a near-
optimal path to the target, despite a slightly coarse trajectory
at the end due to the discretisation inherent in the global path
planner. The mapless DB-V-ε agent tries to explore locally, but

Fig. 4. The success rate of each policy in the training and test environments.

(a) DB-ε agent (b) DB-V-ε agent

(c) DB-V-Global agent

Fig. 5. An adversarial example in the challenging Test map 4 where the
mapless agents are lead into a blind alley. The DB-ε agent remains in the
corner unwilling to move away from the target, whereas the DB-V-ε agent
keeps exploring locally to loop back and find a path to the target.

(a) DB-V-ε agent (b) DB-V-Global agent

Fig. 6. Another adversarial example in Test map 4. This time the DB-V-ε
agent keeps exploring locally but cannot find a path to the target, searching
back and forth in a figure-of-eight pattern.

without knowledge of the map it turns back toward the target
before it can find an opening in the wall section and continues
to move in a figure-of-eight until the end of the episode.

VI. CONCLUSION

Our objective was to train a robotic agent equipped with
a sparse array of rangefinders to navigate safely to targets
in an environment, without access to an obstacle map or
knowledge of the dynamics of the environment. The agent
was trained end-to-end using deep reinforcement learning and
the learned control policy had to output continuous control
commands at the actuator level while expected to execute
high-level pathfinding behaviours. A new reward function was
proposed that augmented the reward signal with a term based
on the velocity of the agent, encouraging the agent to learn
local recovery and exploration behaviours and dramatically
improving the agent’s ability to solve difficult navigation
problems in challenging, previously unseen environments.

The mapless control policy is not designed to replace map-
based approaches. A few simple adversarial examples were

considered that were trivial for a global map-based path
planner, but were impossible for the mapless policy to solve.
However, the learned policy exhibited useful reactive collision
avoidance and local navigation skills and may constitute an
effective low-level component for continuous control, coupled
with a coarser global path planner. The agent that was de-
veloped to serve as a benchmark for the mapless policies
is an illustration of exactly such a system. Futhermore, the
learned policy may also be deployed effectively in resource-
constrained systems where the cost of maintaining a map
is prohibitive, or in situations where the construction and
maintenance of a map are infeasible.

The learning architecture presented here extends naturally
to dynamic environments by simply training the agent in an
environment with moving obstacles. Future work may consider
augmenting the model with a mapping component that may
allow the agent to discern when it is not making progress
toward the target. A more advanced learning architecture may
be developed that allows the agent to leverage its knowledge
of the map to autonomously generate intermediate waypoints
to the target, but care must be taken so that the policies learned
from the training environment are general enough to transfer
to new environments.

REFERENCES

[1] Y. Sun, M. Liu, and M. Q.-H. Meng, WiFi signal strength-based robot
indoor localization, IEEE International Conference on Information and
Automation, pp. 250–256, 2014.

[2] R. S. Sutton, and A. G. Barto, Reinforcement learning: an introduction.
Cambridge, MA: The MIT Press. 2018.

[3] L. Tai, G. Paolo, and M. Liu, Virtual-to-real deep reinforcement learning:
continuous control of mobile robots for mapless navigation, IEEE
International Conference on Intelligent Robots and Systems, pp. 31–36,
2017.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, Continuous control with deep reinforcement learning,
International Conference on Learning Representations, 2016.

[5] T. Fan, X. Cheng, J. Pan, D. Manocha, and R. Yang, CrowdMove:
autonomous mapless navigation in crowded scenarios, arXiv preprint,
arXiv:1807.07870, 2018.

[6] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,
arXiv preprint, arXiv:1804.00456, 2018.

[7] D. Pathak, P. Agrawal, and A. Efros, Curiosity-driven exploration by self-
supervised prediction, IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2017.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, s. Pe-
tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, Human-level control through
deep reinforcement learning, Nature, pp. 529–533, 2015.

[9] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
Deterministic policy gradient algorithms, International Conference on
Machine Learning, pp. 387–395, 2014.

[10] Robotis, Turtlebot 3 specifications, Robotis e-manual, Retrieved from
http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications,
2019.

[11] G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion,
Physical Review, vol. 36 (5), pp. 823–841, 1930.

[12] D. P. Kingma and J. L. Ba, Adam: a method for stochastic optimization,
International Conference on Learning Representations, 2015.

[13] S. J. Russel, and P. Norvig, Artificial intelligence: a modern approach.
Upper Saddle River, New Jersey: Prentice Hall. 2010.

