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Abstract—We present a means of formulating and solving the
well known structure-and-motion problem in computer vision
with probabilistic graphical models. We model the unknown
camera poses and 3D feature coordinates as well as the observed
2D projections as Gaussian random variables, using sigma
point parameterizations to effectively linearize the nonlinear
relationships between these variables. Those variables involved in
every projection are grouped into a cluster, and we connect the
clusters in a cluster graph. Loopy belief propagation is performed
over this graph, in an iterative re-initialization and estimation
procedure, and we find that our approach shows promise in both
simulation and on real-world data. The PGM is easily extendable
to include additional parameters or constraints.

I. INTRODUCTION

The aim of this study is to consider probabilistic graphical
models (PGMs) [1] for modelling and solving the well-known
structure-and-motion (SaM) problem [2] in a probabilistic
framework, as an alternative to the classical route of ma-
trix factorization and the minimization of re-projection error
through bundle adjustment.

PGMs provide a means to deal with uncertainty within a
large system consisting of many interacting components. This
is accomplished by modelling the parameters of the system as
random variables, grouping the variables into clusters using the
statistical dependencies between them, and connecting those
clusters into a graph structure. Inference can then be performed
over the graph for the determination of a posterior distribution
over the variables, given observations which themselves may
be characterized with uncertainty.

The goal of SaM, as used in this study, is to take a set of
2D images of a scene from various unknown viewpoints and
generate 3D coordinates of feature points in the scene (the
structure) as well as camera poses that can be associated with
the images (the motion). The variables in such a system are
the 3D feature coordinates, their observed 2D projections, and
the 6-degree-of-freedom camera poses, while the mathematical
relationships between these variables can be described in terms
of projective geometry [3]. The SaM problem itself is not
that straightforward to solve because of the inter-dependency
between structure and motion, the fact that absolute scale is
lost in projection, and the inherently ambiguous nature of
image data.

We develop and investigate a fairly general technique for
parameterizing systems with continuous random variables
and nonlinear relationships between them. The idea is to
approximate certain distributions with Gaussians, for their
mathematical convenience and familiarity within the PGM
literature. We will use the unscented transform to linearize
nonlinear relationships between variables, and combine the
variables into clusters. Observations can then be used to update
and propagate beliefs through the graphical model, in order to
find a posterior distribution over the latent variables.

Formulating systems in terms of PGMs enables immediate
expansion to include additional logic, such as to penalize
conflicting parameters, as well as integration with other prob-
abilistic models to form complex systems. A probabilistic
approach also provides additional insight into the system, such
as a confidence over estimated parameter values.

We start with a brief overview of projection geometry, and
then explain our PGM formulation along with the manner in
which we linearize and an overview of our implementation.
Experimental results are given and discussed, and we end the
paper with some concluding remarks.

II. PROJECTIVE GEOMETRY

The mathematical relationships between 3D feature coordi-
nates, their 2D projections in the respective images, and the
camera poses associated with the images, can be described
elegantly in homogeneous coordinates [3] (which form the
basis of projective geometry).

The pinhole camera model, depicted in Fig. 1, takes a
3D point X in world coordinates to a 2D point x on the
image plane of a particular camera. As the name of the model
suggests, this projection is done through a single point C
in world coordinates which we call the optical centre of the
camera. The action of a pinhole camera can be expressed very
succinctly in homogeneous coordinates as

x = PX, (1)

where X is a point in P3, P a 3×4 homogeneous matrix, and x
a point in P2. The equality sign here indicates homogeneous
equivalence, implying that the vectors are equal only up to
scale.
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Fig. 1. The pinhole camera model takes a 3D feature point X and projects it
in a straight line through the optical centre C to a point x on the 2D image
plane. It is often convenient to consider this situation in one dimension lower,
as in the diagramme on the right. The projected coordinates of a feature in
two or more spatially separate image planes can be used to recover its original
3D coordinates, if the camera poses are known.

The matrix P in equation (1) is called the camera projection
matrix, or camera matrix for short, and contains the parameters
of the camera in the form

P = KR[I | −C̃]. (2)

Here I denotes the 3 × 3 identity matrix, the vector C̃ is the
Euclidean version of the camera centre in world coordinates,
and the rotation matrix R describes the rotation from world
coordinates to camera coordinates (the xyz-axes shown in
Fig. 1). R and C are the extrinsic parameters, and describe
the position and orientation (i.e. the pose) of the camera in
world coordinates. The 3 × 3 calibration matrix K contains
the intrinsic parameters of the camera, like its focal length
and principal point offsets, to scale and translate camera
coordinates to image coordinates in pixels.

Consider a set of m images, each taken with a camera at
some distinct position and orientation in world coordinates,
and n features identified across these images. Let xi

j be the
homogeneous image coordinates of feature i in image j, that
is

xi
j = PjX

i. (3)

The structure-and-motion (SaM) problem asks for both camera
matrices Pj , j = 1, 2, . . . ,m and 3D feature coordinates
Xi, i = 1, 2, . . . , n, given these image coordinates. For the
purposes of this paper we assume knowledge of calibration
matrices, so the unknowns in Pj are only the extrinsic param-
eters of camera j.

Identifying and matching the projections of features across
a set of images can be accomplished through a method like
SIFT [4] or ORB [5], and outliers can be discarded by
enforcing geometric constraints in a RANSAC process [6].
A solution to the SaM problem can then be attempted through
repeated pairwise estimation of camera poses and feature point
triangulations [7], which involve matrix decomposition. The
issue of drift can be addressed through bundle adjustment [8],
where camera poses and feature points are altered in order to
minimize re-projection error.

With this study we offer an alternative formulation of the
SaM problem that allows for a solution to be achieved through
probabilistic reasoning.

III. OUR PGM FORMULATION

The general idea of solving the SaM problem with a PGM
is to use prior information about the unknown camera poses
and 3D feature coordinates, and integrate that with observed
2D projections in order to obtain posterior knowledge about
the situation. We accomplish this by

• specifying the parameters of the system as random vari-
ables,

• specifying the relationships between these variables as
well as prior distributions over them,

• categorizing the variables into clusters,
• constructing a cluster graph from the clusters,
• and finally running belief propagation over the cluster

graph to obtain a posterior distribution.
These steps result in a posterior distribution over the variables,
and can be viewed as a fairly general approach to probabilistic
modelling. If needed, a solution to the problem can be taken
as those values with highest probability. Importantly though,
this approach gives a distribution, or measure of uncertainty
over the solution.

A. Random variables
The random variables in a SaM system are the pose vari-

ables for every camera, the 3D coordinates for every feature
seen in two or more images, and the image coordinates for
every feature in every image that it is seen.

Every camera matrix Pj is converted to a vector containing
the Euclidean coordinates of the camera centre as well as
the Euler angles representation of its rotation matrix, i.e.
something of the form

p = [Cx, Cy, Cz, θx, θy, θz]
T . (4)

We work with Euclidean versions of Xi and xi
j , since the

arbitrary scale in a homogeneous vector would complicate
the meaning of a probability distribution. For simplicity and
neatness we redefine the symbols Xi and xi

j in the rest of
this paper to refer to 3D feature coordinates and 2D image
coordinates, respectively, and introduce pj to denote the vector
representation of the extrinsic parameters of camera j.

From now on we view the variables Xi, pj and xi
j as

random variables (of dimension 3, 6 and 2 respectively). An
observation will be indicated with a hat, for example x̂i

j . In
essence, the SaM problem can be formulated as finding a
posterior over X1, . . . ,Xn and p1, . . . ,pm given the observed
projections x̂i

j .

B. Relationships between variables
In order to relate observations to latent variables, we need

relationships between them. In our case we may define a
function f such that

xi
j = f(pj ,X

i). (5)

That is to say, f constructs a camera matrix Pj from the
elements of pj (which is a nonlinear operation on the angles),
converts Xi from R3 to P3, then applies the projection stated
in equation (3), and finally converts the result from P2 to R2

(which is also nonlinear).



C. Building a cluster graph

As mentioned, we use cluster graphs to model the SaM
problem. An alternative would be to consider factor graphs. It
seems as if the latter is more widely used, possibly due to the
fact that they are trivial to construct (while the construction of
a valid cluster graph often requires careful planning). A com-
parative study found belief propagation to converge quicker
over cluster graphs, with seemingly the same accuracy [9].
This may be attributed to the fact that the multivariate sepsets
in cluster graphs allow for information between variables to
be propagated more effectively.

Figure 2 (top) shows a small SaM example represented as
a Bayesian network to demonstrate the dependencies between
variables. From such a network we can extract all the factors in
the joint over the variables, which would be the priors p(Xi)
and p(pj) and the conditionals p(xi

j |pj ,X
i). A cluster can be

defined for every factor, so we group the parameters involved
in a single projection into a cluster Ci

j = {xi
j ,pj ,X

i}.
A cluster graph is an undirected graph with clusters as

nodes, and connections between clusters via sepsets. A sepset
between two clusters must be contained in the intersection of
those two clusters, and all sepsets must abide by the running
intersection property. This property states that for any variable
x in the graph, any two clusters containing x must have a
unique path of sepsets containing x between them [1].
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Fig. 2. A small example of a structure-and-motion problem involving four
cameras and four features, drawn as a Bayesian network (top) and a cluster
graph (bottom). Double-circles indicate observed variables, and note that
features are not necessarily visible to all cameras.

In this study we make use of Du Preez’s algorithm to build
cluster graphs, as detailed in [10]. The algorithm formulates
sepsets by iterating through the random variables and con-
necting every cluster containing a particular variable in a tree
structure, before superimposing all of these trees. The result
for our small example is shown in Fig. 2 (bottom).

D. Belief propagation

The next step would be to consider the observed variables
and pass that information and its implications through the
cluster graph in order to reach a consensus.

Since features must be observed in at least two cameras for
their 3D coordinates to be estimated, our graph will contain
loops. This calls for loopy belief propagation [1], which is an
iterative message passing scheme. Although it is not proven
that this approach will converge or that the posterior obtained
will be a good representation of the true distribution, it can
still be of practical use if implemented effectively.

The random variables in our system are continuous. A
significant problem now stems from the nonlinearities in
the relationships between them, specifically in the function
f in equation (5), as well as the operations performed on
distributions during belief propagation. It is near impossible
to define arbitrary continuous distribution functions in closed-
form, and expect the result of a belief update to be in the same
parametric family. Thus some form of approximation becomes
necessary. A Monte-Carlo approach might seem possible, but
the size of a typical SaM problem would require an exorbitant
number of samples.

For mathematical convenience and practical feasibility we
decide to model every observed variable, which is a pro-
jection xi

j , as a Gaussian random variable with mean the
measured coordinates and some standard deviation in pixels
caused by measurement noise. We then take steps to force
other distributions in the system to also be Gaussian, thereby
effectively linearizing the nonlinear operations brought about
by projection and message passing.

IV. LINEARIZATION

We choose to implement the unscented transform for lin-
earizing nonlinear variable transformations and maintaining
Gaussian distributions during the process of message passing.

A. The unscented transform

Consider a Gaussian distribution with mean µ and covari-
ance Σ. With sufficiently many measurements generated from
this distribution, the sample mean µ̂ and sample covariance
Σ̂ ought to reflect the parameters of the original distribution
closely. In fact, a minimal set of weighted points (called sigma
points) can be contrived in such a way as to hold the exact
relationships µ̂ = µ and Σ̂ = Σ. Furthermore, extracting
a set of sigma points from a linearly transformed Gaussian
distribution is equivalent to simply transforming the sigma
points of the original distribution.

The process of changing the parametric representation of a
Gaussian distribution to a set of sigma points is referred to
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Fig. 3. An illustration of our probabilistic analogy to stereo view triangulation from known camera poses, using sigma point parameterization. (a) The
back-projection of a Gaussian distribution on the image plane gives a non-Gaussian distribution over the 3D feature X. (b) A second projection from a
different viewpoint results in a distribution over X that is closer to being Gaussian. (c) By projecting the sigma points of the prior over X, we get distributions
over x1 and x2. (d) Observation of these projections then yields the posterior over X, as seen in the insert on the right.

as the unscented transform [11]. Among many choices, the
following two formulations can be shown to be valid [12].
From an d-dimensional Gaussian distribution we may define
2d points and corresponding weights as follows:

s±i = µ± kℓi and wi = 1, i = 1, . . . , d, (6)

where ℓi is the ith column of the lower-triangular matrix in
the Cholesky factorization of Σ. Alternatively, the so-called
standard sigma point formulation defines 2d+ 1 points as

s0 = µ, s±i = µ±
√

d

1− w0
ℓi, i = 1, . . . , d, (7)

with weights

0 < w0 < 1, w±i =
1− w0

2d
, i = 1, . . . , d. (8)

The unscented transform can be particularly useful in ap-
proximating a nonlinearly transformed Gaussian distribution
with a Gaussian distribution. To this end, consider a Gaus-
sian random variable x and some nonlinear transformation
y = f(x). Since f is nonlinear, the variable y is not Gaussian
(and, in the context of belief propagation, may be quite difficult
to describe). We can take a set of sigma points {si} calculated
from x, transform each to ti = f(si), and approximate y as
a Gaussian with mean and covariance equal to the mean and
covariance of the transformed set {ti}.

This linearization with sigma points is simple and efficient
to implement and, unlike a Taylor linearization, does not need
the Jacobian of the transformation function. It also captures
the mean and covariance accurately to the third-order Taylor
expansion for any nonlinearity [12].

Sigma points are also useful for estimating the joint p(x,y)
as a Gaussian distribution. The sigma points of x and y are
simply concatenated as [sTi , t

T
i ]

T , to form a new set of sigma
points which parameterizes the joint distribution.

B. Stereo triangulation example

Consider the situation in Fig. 3(a), where the projection
of a feature with unknown coordinates X is measured to be
x̂1 on the image plane of a camera parameterized by p1.
The projection can be described with a Gaussian random
variable x1, but it is clear that back-projection results in a
distribution over X that is very much non-Gaussian. If a
second projection is considered, as in Fig. 3(b), the distribution
over X becomes closer to a Gaussian, and we can use sigma
points to approximate the distribution with a Gaussian.

Now consider the scenario in Fig. 3(c) where X is modelled
as Gaussian, with some prior distribution (of which a few
contours are shown in the figure). If the camera parameters are
known, the sigma points determined from X can be projected
to the two image planes to produce Gaussian distributions
over x1 and x2. A posterior distribution over X can now be
found by observing x̂1 and x̂2, as indicated in Fig. 3(d) (for
illustration the figure shows two different observations of x1;
the one marked x̂1 results in the posterior over X shown in
the insert). This posterior is the combined result of the prior
and the two observations, and the procedure is a probabilistic
analogy to stereo view triangulation.

C. Full sigma point parameterization

Prior distributions over the latent variables in our system
(the 3D feature coordinates Xi and camera poses pj) can
be turned into a prior for every cluster Ci

j = {xi
j ,pj ,X

i}
in our cluster graph. We accomplish this by sigma point
parameterizing the priors over Xi and pj , and applying the
projection in equation (5) to every combination, as illustrated
in Fig. 4. This yields a set of sigma points over xi

j , which
we combine with those of Xi and pj to obtain a joint over
all three variables. Observations of the form x̂i

j can now be
propagated through the cluster graph, for updated beliefs over
Xi and pj .



X

p(x1,p1,X)

X

x1

p1

p1

x1 = f(p1,X)

Fig. 4. Every combination of sigma points parameterizing prior distributions
over X and p can be used in a projection to produce a sigma point
parameterization of x as shown on the right.

V. IMPLEMENTATION

We now summarize how a structure-and-motion problem
may be solved by our PGM approach. The input is assumed
to be image feature correspondences identified across a set of
images. We set up clusters corresponding to every projection,
and construct a cluster graph. Gaussian priors are placed on
all 3D feature coordinates and camera poses, and transferred
to the projections. We observe the projections with a small
amount of uncertainty, and loopy belief propagation is per-
formed over the cluster graph, using Gaussian factors in the
manner prescribed by Koller and Friedman [1], to arrive at a
joint posterior over the latent variables.

Since the linear approximations are derived from priors, the
system models the space in the vicinity of these priors more
accurately than the space further away. Therefore, if the priors
do not encompass the true solution, the linearized projective
transformations may become unstable. To circumvent this
problem we allow the system to recapture the projective
geometry a posteriori, by repeating the following:

• re-initialize new sigma points for every cluster with the
means and covariances of the current posterior distribu-
tion,

• run belief propagation on the new clusters to obtain yet
a new posterior.

A further complication may arise here, namely that the co-
variances of the clusters are likely to get smaller for every
new posterior. As a result, the system may converge to a
local minimum far from the true solution. We remedy this
by enlarging the covariances to allow the system to escape
and explore the space outside a local minimum.

VI. EXPERIMENTAL RESULTS

We proceed with some experimental results. Firstly, we
demonstrate our approach in one dimension lower. Refer to
Fig. 5. We randomly position 15 features in 2D, and place
7 cameras randomly around these points. The features are
projected to the 1D image plane of every camera, and some
of these projections are dropped to simulate the idea that
not all features are observed by all cameras. The remaining
projections serve as our observations. As a prior for every 2D
point we choose a wide Gaussian centred at a fixed point in the
middle of the scene, and as priors for the cameras we centre

(b) the system after a local minimum has been reached

(c) the system after the final position has been reached

2.0

error mean = 0.097
error SD = 0.124

(a) initial camera poses and feature positions, with
ground truth camera poses in light grey, and a graph
indicating re-projection errors (coloured according to
cameras)

error mean = 0.000022
error SD = 0.000040

0.0001

0.2

error mean = 0.018
error SD = 0.046

Fig. 5. An example of solving a synthetic 2D structure-and-motion problem.
Every plot shows the ground truth camera positions in light grey, and note
that the plots are anchored to the red camera’s pose (to avoid the similarity
ambiguity in the solution).



TABLE I
THE EFFECT OF NOISY PRIORS ON THE AVERAGE RE-PROJECTION ERROR,
PRIOR TO AND AFTER BELIEF PROPAGATION (TOP AND BOTTOM NUMBER

IN A CELL, RESPECTIVELY), FOR VARIOUS NUMBERS OF CAMERAS,
NUMBERS OF FEATURES AND EXPECTED MEASUREMENT NOISE.

standard deviation of added noise
angles →

position →
2.5◦ 5.0◦ 10.0◦ 20.0◦

0.5 1.0 2.0 4.0

prior and posterior re-projection errorcams ↓ feats ↓ σ ↓

5 50 0.0001

5 100 0.0007

7 60 0.0004

10 100 0.0012

10 200 0.0020

20 200 0.0030

30 500 0.0040

0.1433 0.2356 0.3811 3.1203
0.0002 0.0005 0.0004 0.0020
0.1495 0.2174 0.2366 0.5091
0.0010 0.0016 0.0029 0.0060
0.1276 0.1993 0.2438 0.7232
0.0004 0.0010 0.0026 0.0036
0.1419 0.2156 0.3697 1.0230
0.0012 0.0018 0.0066 0.0093
0.1382 0.2236 0.4711 0.8315
0.0014 0.0031 0.0079 0.0114
0.1471 0.1998 0.4000 0.7868
0.0020 0.0041 0.0054 0.0180
0.1479 0.1972 0.3212 0.8402
0.0030 0.0051 0.0100 0.0203

Gaussians around significant perturbations of the ground truth
poses. Figure 5 depicts the prior situation in (a), the result
of one pass of loopy belief propagation in (b), and the final
optimal solution obtained from our iterative re-initialization
scheme in (c). The system converged to the correct solution,
even though initial estimates were quite far off.

We also simulated the SaM problem in full 3D. Features are
generated randomly inside a sphere of radius 2, and cameras
are placed randomly on a sphere of radius 10 so that they face
the centre. Gaussian noise is added to the camera parameters.
Input 2D feature coordinates are found by projecting the 3D
features with the respective camera parameters. We then add
noise to the camera poses and 3D feature coordinates before
we fit priors over them, while keeping the projections fixed.
Table I lists the average re-projection errors for increasing
amounts of noise in the priors, and we see clear improvements
after running belief propagation. The outcome suggests that the
accuracy of the posterior distribution is affected by the level
of noise in the prior, which is to be expected. The table also
shows the effect of the expected measurement noise, which
is the standard deviation σ in the Gaussians centred around
measured image feature coordinates.

Finally, as a proof of concept, we demonstrate our technique
on a real-world example. We take a set of images, extract and
match features, and follow the classical matrix factorization
route to arrive at an initial configuration. We then centre
priors with wide variance around this initial solution, and
perform belief propagation over the associated cluster graph
for refinement. The result is shown in Fig. 6.

VII. CONCLUSION

The objective of this study was to investigate a probabilistic
approach to model and solve the structure-and-motion problem
which involves continuous variables and nonlinearities. We

prior camera poses

posterior camera poses

Fig. 6. A real-world structure-and-motion problem solved by our PGM
approach. Priors were created from wide Gaussians around an initial solution
(found by matrix factorization). The 3D plot is anchored to the first camera
pose, and only 4 of the 11 input images are shown.

made use of sigma point parameterizations to capture the links
between variables as covariances of Gaussian distributions. We
found it best to perform an iterative re-initialization and loopy-
belief procedure, with widened covariances to escape local
optima (an approach not unlike simulated annealing). Experi-
mentation suggests that there is promise in this approach.

Our PGM can be extended to include additional parameters,
such as the intrinsic camera parameters or binary random
variables to allow the system to infer the correctness of feature
matches (which is an unresolved issue in most structure-and-
motion systems).
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