
Text Detection in Natural Images
with Convolutional Neural Networks

and Synthetic Training Data
Marco Grond∗, Willie Brink† and Ben Herbst‡

Department of Mathematical Sciences, Division of Applied Mathematics
Stellenbosch University

Stellenbosch, South Africa
E-mail: ∗grondmm@gmail.com, †wbrink@sun.ac.za, ‡herbst@sun.ac.za

Abstract—Recognizing text in natural images can be a useful
tool for image understanding. We focus on the detection problem,
which is to find regions in an image occupied by text. We
consider multi-layered convolutional neural networks as a means
to classify local regions as text or not, and take a sliding-window
approach to scan a full image. For training we generate large
synthetic datasets to complement the much smaller available
sets of labelled natural images. Our results suggest that larger
networks can perform better on this problem, and the highest
test accuracy is achieved from training with synthetic data and
fine-tuning with natural data.

I. INTRODUCTION

The automatic finding and interpretation of text in natural
images (like the one in Fig. 1) can be extremely useful
for a variety of applications including autonomous naviga-
tion, driver assistance, accessibility for the visually impaired,
mobile technologies, and the computer vision problem of
complete image understanding. Significant advances have been
made to recognize text in more controlled environments, such
as OCR systems that operate on scanned documents. The more
general setting, however, remains challenging. Text in natural
images tends to be far less distinguishable from the rest of the
image content, and is often distorted by unpredictable lighting
conditions, perspective, and occlusion. The massive variety in
size, font and colour further complicates matters.

In this paper we focus on the detection problem, which
is to locate regions in a given image that are occupied by
identifiable text. Once detected, these regions can be fed to a
text recognition system for interpretation.

It is our view that instances of text in natural images
are better characterized by local appearance than by their
meaning as a whole. Unlike many other approaches that search
for specific characters or words, we look at the problem as
an appearance-based classification problem. Our approach is
to scan the image under consideration in a sliding-window
manner, and implement a convolution neural network (CNN)
to classify local image patches as “text” or “not text”.

CNNs have shown tremendous promise in image-based
object classification [1] and have noteworthy roots in text
recognition [2]. These techniques are also particularly adept at
extracting both low- and high-level features from image data

for better class separation. This is an important property for
us, since the appearance of text in natural images may require
abstract description to compensate for the variety of distortion
factors mentioned above.

A significant limitation of CNNs is that to be effective
they usually require large, manually labelled training sets.
For our problem, however, we can synthesize arbitrarily large
training sets by overlaying machine generated text on natural
images. Even though our synthetic images are rather unnatural
in appearance, we find that they can be combined with a
much smaller set of manually labelled natural images to boost
classification accuracy.

Fig. 1: An example of a natural image containing text (top),
and manually selected text regions to be detected (bottom),
from the Street View Text dataset [3].

We proceed with a brief overview of related literature in
Section II, and some background on CNNs in Section III.
Details of our implementation and experimental results follow
in Sections IV and V, and we conclude in Section VI.

II. RELATED WORK

The problem of detecting text in natural images has been
approached in a number of different ways. The most recent
and successful effort appears to be one where stacked convolu-
tional neural networks are employed [4]. Unlike our approach,
this one specializes on recognizing words and trains a multi-
class classifier to that end. It also uses synthetic data to train
the system for translating image data to character strings.

A relatively popular approach has been to detect single
characters and then group them together for recognition. Edge
detection and the stroke width transform can be used to extract
features for detection [5], [6]. It has also been reported that the
MSER feature detector can work well for finding text [7], [8].
Gradient features and colour uniformity are further options for
identifying individual characters [9].

Apart from the work of Jaderberg et al. [4], other attempts
have been made to detect entire words or lines of text, for
example using a support vector machine to recognize text-like
texture [10].

III. CONVOLUTIONAL NEURAL NETWORKS

In this section we provide a brief overview of convolutional
neural networks. The convolutional layers in such a network
are often stacked, resulting in what is termed deep neural
networks. The reader is referred to the survey papers of
Schmidhuber [11] and LeCun et al. [12] for more detail.

A neural network typically takes an input vector through
one or more hidden layers, where combinations of the values
in one layer are transformed in a certain way and then fed
to the next layer, to be turned into an output vector. For
image classification the input can be the pixel intensities
of an image to be classified, and the output can be class
probabilities. Parameter values that specify the transformations
in the various layers are learned in a training phase from
known input-output correspondences.

A. Layers

A convolutional layer in a neural network slides filters
across the input vector (which for the first level is usually
unprocessed image data) for feature extraction. A nonlinearity
can be applied to the layer’s output, allowing the network to
find nonlinear relationships in the data. A further common
approach is max pooling, which outputs maxima of localized
but overlapping subsets of the incoming vector. A pooling
layer can also reduce the input dimension for the next layer,
and introduces a form of invariance to translation.

Repeating these types of layers by stacking one after the
other may give the network the ability to extract both low-level
features (e.g. edges) and more abstract, higher-level features.
It does, however, increase the number of filter weights to be

learned which in turn may increase the required size of the
training set quite dramatically.

The convolutional and pooling layers are usually followed
by fully connected layers where, unlike convolutional and
pooling layers that operate on local regions of their inputs,
exhaustive connections are considered between all the outputs
of a previous layer. This may allow the network to reason
about the data on a high level.

In the case of classification, the final output layer can be a
softmax function, as used in multi-class logistic regression,
that outputs a vector of probabilities associated with the
predefined set of classes.

B. Training

As mentioned, the parameters in the various layers (such as
the filter weights in a convolutional layer) must be learned.
This involves consideration of known input-output correspon-
dences, which in terms of image classification amount to a
representative set of images for each of the classes.

Training can be accomplished by a process termed back-
propagation. Firstly all the network parameters are initialized,
often randomly. The training images are then passed through
the network, while their true class labels are passed backwards
through the network, and errors (or losses) are computed for
every layer. The errors are scaled by a specified learning
rate, and stochastic gradient descent [13] can be utilized to
update the network parameters in a manner that will iteratively
minimize the error. Momentum can also be added to take
previous parameter updates into account, and the learning
rate is often decreased as training progresses to allow for
convergence to an optimum.

A multi-layered CNN with fully connected layers built for
image classification may contain millions of parameters. This
creates a need for large training sets, often far too large for
manual labelling to be feasible. Training can also be a time
consuming process but, once trained, passing data through
the network would involve a series of simple filter operations
which can be implemented very efficiently on a GPU.

IV. IMPLEMENTATION

In this section we describe our solution to the text detection
problem. Our approach is to consider local image regions, and
attempt to classify each as “text” or “not text” using a multi-
layered CNN that outputs the two class probabilities for a
given image patch. The full image can then be scanned in a
sliding-window manner, as detailed in Section IV-E.

We will compare two different network architectures, as
explained in Section IV-D. Both of these consist of multiple
convolutional and pooling layers, and require a large amount
of training data (labelled examples of the two classes). While
annotated datasets are available, such as the one containing
the image in Fig. 1, we found them to be fairly small and
decided to augment our training set with synthetic data.

A. Natural images

We collected 350 images from the Street View Text dataset
[3] and 185 from the MSRA-TD500 dataset [6] (which has
500 images, but many contain only Chinese characters). The
latter is fully annotated, in the sense that all regions containing
text are specified as metadata. The former provides annotations
only for the larger names of businesses on buildings, so we
added annotations of all other instances of text. Additionally,
we took 39 frames from news broadcasts on cnn.com and
selected text regions on those. These sources provide us with
574 natural images in total, and we supplement this collection
with the 12,503 natural single character images from the
Chars74K dataset [14].

B. Synthetic images

In order to increase our training data by a substantial
amount, we can consider synthetic data. Machine generated
text over a natural image background may contain the essence
of the appearance of text occurring naturally, which a neural
network should be able to extract. We created a range of words
of varying fonts, sizes, orientations, colours and opacities, and
blended these words onto natural background images. Since
we control the placing of words, annotation (i.e. specifying
the text regions) is trivial.

We extracted 4,657 of the larger images from the SUN2012
dataset [15] to use as backgrounds. For each of these images
we picked between one and ten words from a list of the 10,000
most common English words. For each word we randomly
selected a font from about 700 options, a scale based on the
size of the image (to avoid extremely small or extremely large
text), a colour, and an opacity between 0.6 and 1. We then
placed the word on the background at a random position and
orientation, on the condition that no two word placements
overlap. In keeping with the annotation style of the natural
datasets from Section IV-A, we stored the bounding rectangle
of every added word.

C. Sampling image windows

From our 574 natural images and 4,657 synthetic images
we can extract windows (square regions) which will be used
to train and evaluate a network. We randomly select 200×200
windows from all the images, and label each according to its
overlap with the known text regions. If more than 50% of
the window overlaps with text regions, the window is labelled
as “text”. If less than 5% of the window overlaps with text
regions, the window is labelled as “not text”. Windows that
do not fit these categories are discarded, to avoid ambiguity
in the data.

Figure 2 provides examples of these windows from one of
the synthetic images. It may be noted that the appearance of
text in this image is rather unnatural, but perhaps less so on the
scale of the extracted windows (which is the scale the network
will focus on).

We split the labelled windows into a number of training,
validation and test datasets, as indicated in Table I. We keep
the natural and synthetic data separate in order to test the

(a) text added to natural image

(b) selected windows

(c) windows labelled as “text”

(d) windows labelled as “not text”

(e) windows discarded due to ambiguity

Fig. 2: An example of text synthetically added to a natural
background image, and windows extracted from the result. For
training and testing purposes each of these windows is labelled
as “text” or “not text”, or discarded if between 5% and 50%
of its area overlaps with text regions (i.e. it has neither enough
text nor enough background).

TABLE I: Details of the various datasets used for training,
validation and testing in this study. Note that nat train1 is a
subset of nat train2 which is a subset of the 373 natural images
in nat train3. The latter set is supplemented with 12,503 single
character images.

dataset # images # windows # positives
(text)

negatives
(not text)

synth train 3,634 1,090,709 416,195 674,514
synth val 1,023 307,721 115,782 191,939
nat train1 200 15,837 8,223 7,613
nat train2 320 25,979 13,758 12,221
nat train3 373 + 12,503 57,714 28,880 28,834

nat val 86 7,640 3,750 3,890
nat test 115 10,695 5,488 5,207

efficacy of each before we combine them. The training set of
windows from the natural images is supplemented with the
single character images from the Chars74K dataset [14]. Note
also that we use only natural image windows in the holdout
test set, in accordance with the aim of this study.

D. Network structures

We consider two network architectures: LeNet-5 [2] and
ImageNet [1]. The classic LeNet structure is chosen since it
was initially implemented for character recognition, which is
similar to our problem. The much larger ImageNet structure
was originally used for object classification and is chosen
for its impressive performance on image data. LeNet consists
of two convolutional layers followed by two fully connected
layers. ImageNet has five convolutional layers followed by
three fully connected layers. We use these structures as is,
except that we replace the sigmoidal activation functions in
LeNet with rectified linear unit activations [12] because of
their recent popularity.

We train a number of networks using the various training
sets listed in Table I. Firstly, we train each of the two
structures using random initialization and the synthetic data
in synth train. Randomization is accomplished by sampling a
zero-mean Gaussian in the case of ImageNet, and the Xavier
algorithm [16] in the case of LeNet. For comparison we
then also train randomly initialized networks using the small,
medium and large natural datasets (nat train1, nat train2 and
nat train3 respectively). Finally, we initialize networks with
the parameters obtained through training with the synthetic
data, and perform training with the natural sets. The idea is
to leverage the size of our synthetic training set, but then
fine-tune the network parameters according to a much smaller
natural training set.

With random initialization we use a larger learning rate
than when we fine-tune. In most cases we implement inverse
learning rate decay, and the only exception is the ImageNet
structure trained on synthetic data where we reduce the learn-
ing rate at specific step intervals. It is not always clear why
different learning rate policies influence training in the manner
that they do, but we experimented with various ones to give
each network a fair chance of training successfully.

E. Text detection in a full image

We train the various networks to classify a local image
region, like the windows shown in Fig. 2, as either text or
not. If a window is passed through a network we obtain a
probability that at least 50% of that window is text (recall that
this was our definition of the “text” class when we assigned
labels to our training data).

To detect text in a full image, we can simply scan the
image in a sliding-window manner and determine a probability
for each window. By allowing the windows to overlap, and
averaging probabilities per pixel, we can achieve a higher
effective resolution and possibly improve the localization of
text regions. We note that there is room for improvement in
this strategy, by combining probabilities in a more statistically
rigorous manner for example, and we comment further on the
matter in Section VI. However, as we indicate at the end of the
next section, this simple approach can already produce useful
results.

V. EXPERIMENTAL RESULTS

In total we trained 14 networks using combinations of
different structures, initialization strategies, and training sets.
These networks were then tested against the holdout set
nat test, which consists of windows extracted from natural
images. Table II summarizes our findings. Here accuracies
refer to the combined true-positive and true-negative rates (i.e.
what percentage of test windows are classified correctly).

Networks A and H resulted from training the two structures
on synthetic data. Although training and validation accuracies
are quite high (around 81 % for the LeNet structure and 94 %
for ImageNet), the test accuracies are noticeably poorer (72 %
and 66 %). This indicates that the features extracted from pure
synthetic training data might not immediately generalize to
naturally occurring text.

We then experimented with training the two structures with
natural data only, using the small, medium and large train-
ing sets nat train1, nat train2 and nat train3. This produced
networks B, C, D and I, J, K in Table II. Training accuracy
improves a lot for LeNet (to around 98 %), while it decreases
slightly for ImageNet (now around 90 %). However the dif-
ference between training and validation accuracy increases,
particularly for LeNet, indicating over-fitting. The effect is
reduced with larger training sets which, as might be expected,
suggests that more training data is better. Test accuracy does
improve from what is obtained with networks A and H, and
quite significantly so for the ImageNet structure.

Finally we considered the combination of synthetic and nat-
ural training data, by initializing networks with the parameters
obtained from training on synthetic data (LeNet network A and
ImageNet network H) and re-training with the natural training
sets. This resulted in networks E, F, G and L, M, N. It is this
strategy that performs best on the test data, with improvements
in accuracy of about 7 % for LeNet and 18 % for ImageNet
compared to the networks trained with synthetic data only, and
improvements of about 3 % compared to the networks trained
with natural data only.

TABLE II: Classification accuracies (combined true-positive and true-negative rates) achieved from various network structures,
initialization strategies and training sets. We used synth val as validation set for networks A and H, and nat val for the others.
The trained networks were all tested on the holdout set nat test.

network structure initialization training set training
accuracy

validation
accuracy

test
accuracy

A LeNet random synth train 81.7 % 81.4 % 72.2 %
B LeNet random nat train1 99.6 % 74.8 % 75.0 %
C LeNet random nat train2 98.9 % 79.4 % 78.8 %
D LeNet random nat train3 97.1 % 78.9 % 76.7 %
E LeNet network A nat train1 99.5 % 77.6 % 77.7 %
F LeNet network A nat train2 97.5 % 80.3 % 80.3 %
G LeNet network A nat train3 95.4 % 81.1 % 81.0 %
H ImageNet random synth train 94.8 % 94.2 % 66.3 %
I ImageNet random nat train1 92.6 % 82.5 % 79.2 %
J ImageNet random nat train2 88.6 % 83.9 % 81.2 %
K ImageNet random nat train3 88.4 % 83.3 % 84.3 %
L ImageNet network H nat train1 96.2 % 82.5 % 81.7 %
M ImageNet network H nat train2 94.8 % 85.6 % 85.2 %
N ImageNet network H nat train3 92.9 % 85.7 % 87.0 %

It is clear that more training data improves performance
(networks C and D offer an exception, but not a significant
one). We also conclude that the ImageNet structure performs
better overall than the LeNet structure, suggesting that higher-
level description is required to successfully separate the ap-
pearance of “text” from that of “not text”.

Figure 3 provides a visualization of filter weights in the first
layers of networks H, K and N. Some of the structures seen in
(a) and (c) are reminiscent of edge detectors, and hint to the
idea that larger training sets may enable a network to extract
more meaningful features that generalize better.

(a) trained with synth train

(b) trained with nat train3

(c) trained with synth train, fine-tuned with nat train3

Fig. 3: A visualization of 30 filters in the first convolutional
layers of networks H, K and N. The filters in (b) appear almost
random, while a few in the other two (trained with much more
data) contain structure similar to edge detectors.

A few examples of windows incorrectly classified by net-
work N are shown in Fig. 4. We find that those incorrectly
classified as “text” (i.e. false positives) often contain text-
like properties such as sharp edges or homogeneous texture.
Those windows incorrectly classified as “not text” (false
negatives) may contain less pronounced differences between
text and background or unusual fonts. Sometimes the reason
for misclassification is less clear, likely due to the highly
complex nature of multi-layered CNNs.

As a final experiment we applied the trained networks to
full images in a sliding-window fashion. We allow overlap
between windows and average the probabilities return by the
network for every pixel. Some examples generated in this
way with networks H, K and N are shown in Fig. 5. For
these particular examples it seems as if network H (trained
with synthetic data) tends to under-detect and network K
(trained with natural data) tends to over-detect, while network
N (trained with synthetic data and fine-tuned with natural data)
offers a good compromise.

(a) false negatives (incorrectly classified as “not text”)

(b) false positives (incorrectly classified as “text”)

Fig. 4: A few examples of windows incorrectly classified by
network N.

(a) input image (b) network H (c) network K (d) network N

Fig. 5: Text detection in full images by classifying local windows and per-pixel averaging probabilities returned by a network
(probabilities are displayed in the jet colourmap). All three networks have the ImageNet structure, H was trained on synth train,
K on nat train3, and network N was initialized with the parameters of H and then fine-tuned with nat train3.

VI. CONCLUSION

The aim of this work was to create a system capable
of detecting text in natural images. Because of the intricate
variabilities to be expected in the appearance of text regions
(including size, orientation, font and colour) we decided to
implement a multi-layered CNN and train it to classify a local
image region as “text” or “not text”. These networks require
large labelled training sets to be effective, but in this case
we could synthesize data quite easily by overlaying machine
generated text on background images.

Our results indicate that a larger network structure (like
ImageNet) is needed for this problem, and that a network
with fewer layers (like LeNet) can be prone to over-fitting.
Our results further suggest that surprisingly high accuracy
is achievable with a relatively small natural training set, but
initializing the network parameters to those obtained from
training on a large synthetic dataset can improve matters.
Even though this improvement is an increase in test accuracy
of about 3 %, further analysis indicates that we can expect
significantly better generalization from the approach.

For future work it might be fruitful to revisit the strategy
of averaging probabilities of overlapping windows to arrive
at probabilities on pixel-level. Image pyramids can also be
implemented to account for larger variation in text size. Once
a result like one of those in Fig. 5 is obtained, the next
step would be to delineate text regions and pass them to a
recognition system for interpretation. False positives could also
be eliminated in that process.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[3] K. Wang and S. Belongie, “Word spotting in the wild,” in European
Conference on Computer Vision, 2010, pp. 591–604.

[4] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading text
in the wild with convolutional neural networks,” International Journal
of Computer Vision, vol. 116, no. 1, pp. 1–20, 2016.

[5] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes
with stroke width transform,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2010, pp. 2963–2970.

[6] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu, “Detecting texts of arbitrary
orientations in natural images,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 1083–1090.

[7] H. Chen, S. Tsai, G. Schroth, D. Chen, R. Grzeszczuk, and B. Girod,
“Robust text detection in natural images with edge-enhanced maximally
stable extremal regions,” in IEEE International Conference on Image
Processing, 2011, pp. 2609–2612.

[8] X. Yin, X. Yin, K. Huang, and H. Hao, “Robust text detection in natural
scene images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 5, pp. 970–983, 2014.

[9] C. Yi and Y. Tian, “Text string detection from natural scenes by
structure-based partition and grouping,” IEEE Transactions on Image
Processing, vol. 20, no. 9, pp. 2594–2605, 2011.

[10] K. Kim, K. Jung, and J. Kim, “Texture-based approach for text detection
in images using support vector machines and continuously adaptive
mean shift algorithm,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 12, pp. 1631–1639, 2003.

[11] J. Schmidhuber, “Deep learning in neural networks: an overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 51,
no. 7553, pp. 436–444, 2015.

[13] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade. Springer, 2012, pp. 421–436.

[14] T. de Campos, B. Babu, and M. Varma, “Character recognition in natural
images,” in International Conference on Computer Vision Theory and
Applications, 2009, pp. 273–280.

[15] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “Large-scale
scene recognition from abbey to zoo,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2010, pp. 3485–3492.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

