
FastSLAM with Stereo Vision
Wikus Brink

Electronic Systems Lab
Electrical and Electronic Engineering

Stellenbosch University
Email: wikusbrink@ieee.org

Corné E. van Daalen
Electronic Systems Lab

Electrical and Electronic Engineering
Stellenbosch University

Email: cvdaalen@sun.ac.za

Willie Brink
Applied Mathematics

Department of Mathematical Sciences
Stellenbosch University

Email: wbrink@sun.ac.za

Abstract—We consider the problem of performing simultane-
ous localization and mapping (SLAM) with a stereo vision sensor,
where image features are matched and triangulated for use as
landmarks. We explain how we obtain landmark measurements
from image features, and describe them with a Gaussian noise
model for use with a Rao-Blackwellized particle filter-based
SLAM algorithm called FastSLAM. This algorithm uses particles
to describe uncertainty in robot pose, and Gaussian distributions
to describe landmark position estimates. Simulation and experi-
mental results indicate that FastSLAM is well suited for vision-
based SLAM, because of an inherent robustness to landmark
mismatches, and we achieve accuracies that are comparable to
other state-of-the-art systems.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a rapidly
growing part of the autonomous navigation field. SLAM
attempts to solve the problem of estimating a mobile robot’s
position in an unknown environment while building a map
of the environment at the same time. This is a challenging
problem since an accurate map is necessary for localization
and accurate localization is necessary for mapping.

Most SLAM algorithms use a probabilistic landmark-based
map rather than a dense map. If landmarks in the map can
be measured, relative to the robot, and tracked over time the
pose of the robot and the locations of the landmarks can be
estimated in an optimal manner.

Initial implementations made use of the extended Kalman
filter (EKF), but displayed several shortcomings such as
quadratic complexity and sensitivity to incorrect feature track-
ing [1] [2]. The particle filter can be used to overcome these
limitations. However, because of the high dimensionality of
the problem the particle filter cannot be used directly. Instead,
the Rao-Blackwellized particle filter [3] is used. This filter
estimates some states with particles and others with EKFs.
In the case of SLAM particles are used for the pose of the
robot and an EKF for each landmark. This method is called
FastSLAM and has shown promising results in the literature
[4] [5].

Stereo vision is an attractive sensor to use with SLAM as
it can provide a large amount of 3D information at every
time step. Extracting that information reliably can, however,
be challenging. Powerful algorithms such as SIFT [6] or SURF
[7] have been used to solve this problem by extracting salient
features from images. These algorithms can be employed to

track features over multiple images so that landmarks for
SLAM can be identified.

In this paper we attempt to solve the 2D SLAM problem by
using FastSLAM and image features (the 3D extension is con-
ceptually the same). We begin with a brief description of how
we obtain measurements of landmarks with a Gaussian noise
model. A detailed description of the FastSLAM algorithm
is given, followed by some simulations where we compare
FastSLAM with the popular EKF SLAM algorithm [2]. We
provide experimental results from our system on an outdoor
dataset and measure accuracy against differential GPS ground
truth.

II. IMAGE FEATURES AND STEREO GEOMETRY

In this section we discuss a method of finding features in
images, triangulating these features for use as landmarks and
approximating the noise associated with each measurement of
a landmark. This characterization of the stereo vision sensor
is important for accurate optimal estimation. Since this section
is similar to previous work, the explanation will be brief. For
a more in depth discussion refer to [8] and [9].

A. Feature detection and matching

In order to identify landmarks we opt for one of two popular
feature detection algorithms: the scale-invariant feature trans-
form (SIFT) [6] or speeded-up robust features (SURF) [7].
Note that since we perform SLAM in 2D we discard the
vertical coordinates of image features.

At every time step we search for feature matches in a
synchronized pair of rectified stereo images. We model each
match as a measurement with Gaussian noise:

zim =

[
xL
xR

]
+N (0,Nt), (1)

where xL and xR are the image coordinates of the feature in
the left and right images. By N (0,Nt) we mean a sample
drawn from the normal distribution with zero mean and
covariance matrix Nt (the same notation is used throughout
the rest of this paper). We describe the noise covariance in
Equation 1 by

Nt =

[
σ2
xL

0
0 σ2

xR

]
, (2)

with σxL
and σxR

the standard deviations in pixels of the
match measurement, which we obtain through testing.

yr
xr zr

(xL, yL)

(xR, yR)cL

cR Yw

Xw

Yr

Xr

yr

xr

ψt

?

(xt, yt)

(a) camera geometry (b) robot geometry

Fig. 1. The geometry of our system.

We can then match the descriptors of a new measurement
with the descriptors of features already found at previous time
steps, to arrive at putative landmark correspondences.

B. Stereo geometry of calibrated images

Now that we have stereo image features that can be tracked
over time, we convert them into 2D landmarks.

Figure 1(a) depicts the geometry of a pair of stereo cameras
with camera centres at cL and cR, where the image planes
have been rectified, and a landmark

[
xr yr zr

]T
observed

at image coordinates (xL, yL) in the left image and (xR, yR)
in the right image. As mentioned we are working in 2D, so
the features are effectively projected onto the Xr − Yr plane.

With the geometry of the stereo camera pair, the landmark
location in metres can be calculated in robot coordinates as[

xr
yr

]
=

[
fb

xL−xR

(xL−px)b
xL−xR

− b
2

]
+N (0,Qt), (3)

where b is the baseline (distance between cL and cR), f the
focal length and px and py the x- and y-offset of the principal
point, all obtained from an offline calibration process. Qt is
the noise covariance matrix of the measurement.

Note that we differentiate between robot coordinates (sub-
script r) and world coordinates (subscript w) as indicated in
Figure 1(b), where xt, yt and ψt are the robot’s position and
orientation in world coordinates at time t.

We know that a transformation from Nt to Qt is possible
if we have a linear system and, since Equation 3 is not
linear, we use a first order Taylor approximation to find the
transformation matrix

Wt =

[
∂xr

∂xL

∂xr

∂xR

∂yr

∂xL

∂yr

∂xR

]
. (4)

It then follows that Qt can be approximated as

Qt = WtNtW
T
t . (5)

This approximation is performed to maintain a Gaussian noise
model, which is necessary for FastSLAM. We use this noise
model and the triangulated locations of landmarks to find out-
liers in putative correspondences between new measurements
and those already in the map, according to the RANSAC-based
probabilistic method discussed in [9].

From Figure 1(b) we see that the robot pose can be
described with the state vector

xt =

xtyt
ψt

 , (6)

with xt and yt the location of the robot and ψt its orientation.
We define the rotation matrix

Rt =

[
cos(ψt) − sin(ψt)
sin(ψt) cos(ψt)

]
. (7)

In order to perform SLAM we need to establish a relationship
between robot and world coordinates. We denote the location
of a landmark i in the map corresponding with measurement
j at time t as

mi,t =

[
xw
yw

]
and zj,t =

[
xr
yr

]
. (8)

The measurement zj,t will always be as the robot observes
the landmark in robot coordinates, and the landmark’s location
mi,t will always be given in world coordinates. The transfor-
mation between robot and world coordinates is given by the
measurement equation

zj,t = h(xt,mi,t) = RT
t

[
xw − xt
yw − yt

]
, (9)

or inversely,

mi,t = h−1(xt, zj,t) = Rt

[
xr
yr

]
+

[
xt
yt

]
. (10)

Exactly which measurement corresponds to which landmark
in the map, as matched with the feature descriptors and
confirmed with the outlier detection scheme, is stored in a
correspondence vector ct.

III. MOTION MODEL

Now that we have established a measurement equation, we
need to derive a motion model for our robot so that we can
perform SLAM. We use the velocity motion model. At every
time step the controller of the robot will give it a forward and
angular velocity,

ut =

[
v

ψ̇

]
+N (0,Mt), (11)

with v the forward translational speed and ψ̇ the angular
velocity. To characterize the uncertainty we add zero mean
Gaussian noise with covariance matrix

Mt =

[
α1v

2 + α2ψ̇
2 0

0 α3v
2 + α4ψ̇

2

]
, (12)

as is common practice [1]. The α parameters are robot and
environment specific, and have to be estimated with practical
testing and some degree of guesswork.

To update the robot states with the control input we define
the motion equation as

xt = g(xt−1,ut) =

xt−1yt−1
ψt−1

+

Rt−1

[
vT cos(ψ̇T)

vT sin(ψ̇T)

]
ψ̇T

 ,
(13)

with T the sample period of the system. Although this is an
approximation, the accuracy lost due to the approximation is
far smaller than the effect of expected noise in the control
input ut.

IV. SLAM WITH THE RAO-BLACKWELLIZED PARTICLE
FILTER

The particle filter can be used to approximate any distri-
bution, and it is often utilized to accurately estimate non-
Gaussian systems. A major drawback of the particle filter,
however, is that with high dimensional problems a large
number of particles is needed to describe the distribution
sufficiently. The Rao-Blackwellized particle filter has been
developed to overcome this problem [3]. This filter uses
particles to describe some states and Gaussian distributions
to represent all other states. In order to utilize it we need to
factorize the SLAM problem as

p(xt,m | z1:t,u1:t) = p(xt | z1:t,u1:t)

n∏
i=1

p(mi | z1:t,u1:t).

(14)
With this factorization we describe the required posterior as
a product of n+ 1 probabilities. If we suppose that the exact
location of the robot is known, it is reasonable to assume that
the landmark positions are independent from one another and
can therefore be estimated independently. Naturally, we do
not know the robot’s location, but this independence can be
utilized when we use particles to estimate the robot position.
It can even be shown that the above factorization is exact and
not an approximation [4].

FastSLAM uses a particle filter to compute the posterior
over robot states, p(xt | z1:t,u1:t), and a separate EKF for
every landmark in the map to obtain p(mi | z1:t,u1:t). What
this means is that, instead of only one filter, we factor the
problem into 1 + nm filters, where m is the number of
particles. The large number of filters may seem excessive, but
because of the low dimensionality of each individual filter the
algorithm is remarkably efficient.

We define every particle to have a state vector for the robot
states, and a mean vector and covariance matrix for every
landmark, as

Y
[k]
t =

〈
x
[k]
t ,
〈
m

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
m

[k]
n,t,Σ

[k]
n,t

〉〉
, (15)

with x
[k]
t the robot location and orientation for particle k,

and
〈
m

[k]
i,t ,Σ

[k]
i,t

〉
the i-th landmark’s Gaussian mean and

covariance. The FastSLAM algorithm, as it is executed at
every time step, is given below in Algorithm 1. We proceed
with a step by step explanation.

Algorithm 1 FastSLAM(Yt−1,ut, zt, ct)
1: for all particles k ∈ {1, 2, . . . ,m} do

2: x
[k]
t ∼ p(xt |x[k]

t−1,ut)

3: for all observed landmarks zi,t do

4: j = ci,t

5: if landmark j has never been seen then

6: m
[k]
j,t = h−1(x

[k]
t , zi,t)

7: Hj = Jh(m
[k]
j,t)

8: Σ
[k]
j,t = (H−1j)Qi(H

−1
j)T

9: else

10: ẑ = h(x
[k]
t ,m

[k]
j,t)

11: Hj = Jh(m
[k]
j,t)

12: Q = HΣ
[k]
j,t−1H

T + Qi

13: K = Σ
[k]
j,t−1H

T
j Q−1

14: m
[k]
j,t = m

[k]
j,t−1 + K(zi,t − ẑ)

15: Σ
[k]
j,t = (I−KHj)Σ

[k]
j,t−1

16: w[k] = w[k]f(Q, zi,t, ẑ)

17: end if

18: end for

19: for all other landmarks j′ 6∈ ct do

20: m
[k]
j′,t = m

[k]
j′,t−1

21: Σ
[k]
j′,t = Σ

[k]
j′,t−1

22: end for

23: end for

24: for all k ∈ {1, 2, . . . ,m} do

25: draw random particle k with probability ∝ w[k]

26: include
〈
x
[k]
t ,
〈
m

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
m

[k]
n,t,Σ

[k]
n,t

〉〉
in Yt

27: end for

28: return Yt

• Lines 1 and 2: As with a normal particle filter, the
FastSLAM algorithm begins by entering a loop over all
the particles. The control input is used to sample a new
robot pose for every particle according to the uncertainty
in the motion model. We add random noise drawn from
a zero mean Gaussian distribution with a covariance of
Mt, given in Equation 12, to the control input and use
the motion equation g, given in Equation 13, to find the
new location and orientation of each particle.

• Lines 3 and 4: For every particle we enter a loop over all
the measured landmarks. For every iteration the algorithm
can do one of two things: add a new landmark, or update

an old landmark. The index of an old landmark in the
map is given by the correspondence vector.

• Lines 5 to 8: A new landmark is added to the map
using the measurement equation h, given in Equation 9,
to calculate its location in world coordinates. Since we
want to use an EKF to estimate each landmark we have
to linearize the measurement model by using a first order
Taylor approximation with the Jacobian

Jh(xt,mj,t) =

∂xr

∂xw

∂xr

∂yw

∂xr

∂zw
∂yr

∂xw

∂yr

∂yw

∂yr

∂zw
∂zr
∂xw

∂zr
∂yw

∂zr
∂zw

 . (16)

With this Jacobian we transform the uncertainty in mea-
surement to an uncertainty in world coordinates.

• Lines 9 to 15: If a landmark has been observed before,
we use the normal EKF equations to update its state
vector and covariance. The state estimate is calculated by
using the measurement model. The measurement model
is then linearized with a Jacobian similar to the one used
for new landmarks.

• Line 16: Once the landmark has been updated by using
the measurement we have to calculate its effect on the
weighting of the particle in question. As with a normal
particle filter the importance weight is given by

w[k] =
target distribution

proposal distribution
. (17)

The weighting function used in the algorithm can be
shown [4] to be

f(Q, zi,t, ẑ) = |Q|−
1
2 e−

1
2 (zi,t−ẑ)TQ−1(zi,t−ẑ). (18)

It is not necessary to update the weight for new landmarks
as they will be the same for all particles, and therefore
have no overall effect.

• Lines 19 to 22: If a previously observed feature has not
been observed at the current time step its state vector
and uncertainty will remain unchanged. All unobserved
landmarks are therefore essentially ignored. This property
of the algorithm is especially useful when a large map
is maintained, as the number of unseen landmarks in the
map does not impact the execution time.

• Lines 24 to 27: Resampling is done by drawing parti-
cles with a probability proportional to their normalized
weights. Particles with low weights will be more likely
to perish while particles with high weights will be copied
and used at the next time step.

• Line 28: Finally the updated and resampled particles are
returned to be used at the next time step.

A powerful possibility emerging from the use of particles
is that of multiple hypothesis tracking. What it entails is that,
since particles represent possible paths that the robot could
have taken, we can calculate landmark correspondences for
each particle separately. Because of the expensive nature of
calculating feature matches we decide against this procedure
and, instead, calculate one correspondence vector for all the

particles. It is, however, important to note that the algorithm
creates this possibility and future extensions can explore this
feature.

V. SIMULATION

In order to test our SLAM systems we created a simulation
environment that provides a realistic representation of the
real world while facilitating a quantitative evaluation of the
performance of the system.

A. Simulation environment

We created the environment with the aim of simulating the
real world without it being unnecessarily complicated. We
opted for a route through a corridor-like environment with
landmarks on the walls. Although these landmarks are more
structured than they typically would be in a real world situa-
tion, the structure should not influence the result significantly
and should have the benefit of being easy to evaluate visually.

In order to create a control input we supply waypoints for
the simulated robot to follow. At each time step a simple
gain controller generates an input command that steers it
towards the next waypoint. This control input is stored for
use in the SLAM simulations but, before the robot executes
the command, we add some Gaussian noise to simulate the
uncertainty that we know exists in this process (in other
words, we add process noise to the control input). The robot’s
actual motion from the noisy control is used as a ground truth
trajectory and to generate the measurements.

As the robot moves through the environment, landmarks in
the robot’s field of view are included in the measurement at
every time step. Because feature detectors will sometimes see
a landmark at one time step and not at the next, even if it is
in the field of view, we add a probability that a landmark will
be seen. We project the landmarks onto the image planes of
two cameras fixed on the robot and then add Gaussian noise
to the pixel coordinates. Each landmark is assigned a unique
scalar to be used as a descriptor. By changing or mixing
these descriptors in a measurement we can simulate feature
mismatches and investigate their effect on the accuracy of the
SLAM system.

B. Simulation results

The simulation environment and the route and map as
estimated by FastSLAM, using 250 particles, is depicted in
Figure 2. At every time step each landmark has a 40%
chance of being observed, but if it is observed, matching is
done without error. When we display the route estimated by
FastSLAM, we use a weighted average of the particles at every
time step. In order to evaluate the accuracy we compare it
to results obtained from another popular SLAM algorithm,
namely EKF SLAM [8]. Results of the two algorithms are
consistently similar in this simulation, even with varied noise
parameters.

The experiment described above shows that it is possible to
achieve accurate results using 250 particles with FastSLAM.
To further investigate the relationship between the number

−60 −40 −20 0 20 40 60
−20

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

Yr (m)

X
r

(m
)

Yr (m)

X
r

(m
)

(a) simulation without landmark mismatches

(b) simulation with landmark mismatches

Fig. 2. The route and map from a simulation of FastSLAM, compared
to EKF SLAM and ground truth (top). The bottom panel depicts an enlarged
section of a simulation with landmark mismatches. The routes calculated with
EKF SLAM are shown in magenta, the ground truth route in red and the
environment walls in green. The estimated routes from FastSLAM are depicted
in blue and the estimated landmark positions as black dots with corresponding
confidence ellipses in cyan. Trajectories are shown with markers on every tenth
time step.

of particles and accuracy we ran several simulations, each
with a different number of particles. For every such number
we ran the test 20 times in an attempt to remove the effect

0 50 100 150
0

1

2

3

4

10
25
50
100
250
500
1000
2500

time (s)

er
ro

r
(m

)

Fig. 3. The effect of different numbers of particles on the Euclidean error
of the route estimated by FastSLAM.

of randomness introduced by the pose sampling step of the
algorithm. Results of these experiments are shown in Figure 3.

We see that with FastSLAM in 2D, 250 particles is a good
number to use as we do not lose much accuracy in comparison
to using a larger number of particles.

In order to test the effect of landmark mismatches on
the accuracy of FastSLAM we performed a simulation with
such mismatches. The EKF SLAM algorithm is notorious
for its inability to handle this kind of error [1] [8] and our
simulation confirms this. With only six landmark mismatches
over three time steps the EKF becomes unstable. With the
same mismatches FastSLAM remains stable and introduces
only a small degree of drift. This is a major practical advantage
of the algorithm. These results are also depicted in Figure 2.

With these simulations we can establish, in a controlled
environment, that FastSLAM achieves accuracy similar to EKF
SLAM and is robust to landmarks mismatches. The following
section describes our practical tests and results.

VI. EXPERIMENTAL RESULTS

The final step in our investigation and development of a
FastSLAM system that uses stereo vision as a sensor is to test

Laptop

DGPS antenna

Pioneer

Fireflies

Sync unit

Fig. 4. Test platform.

Fig. 5. Sample frames (captured by the left camera) of the datasets used in
our experiments.

the complete system with real world datasets.

A. Experimental setup and datasets

A real world dataset should ideally consist of a set of im-
ages captured by two synchronized and calibrated cameras, a
control input and independently obtained ground truth location
information that can be used to evaluate the performance of
algorithms.

In order to capture such datasets we mounted a stereo
camera set on a Pioneer 3-AT from Mobile Robots. We
programmed the robot to execute a command given to it by a
human using a joystick controller. At every time step we store
the forward and rotational velocities so that they can be used
as control input by the SLAM algorithms.

Our stereo camera rig consists of two Point Grey Firefly
MV cameras with a synchronization unit we developed.

Ground truth data is recorded with a DGPS (accurate to
about 5 cm) mounted on the robot. Note that this ground truth
data is not used in our SLAM system, and is employed merely
for evaluating results.

Figure 4 shows a picture of our test platform, indicating the
various components.

When we work in a real world scenario we should expect
problems such as bad lighting, uncluttered scenes (that give
very few features), and a fair amount of shaking. We tried
to capture realistic datasets that included these problems to a
degree.

Two datasets were captured on the roof of the Electrical and
Electronic Engineering building in Stellenbosch. The roof is a
suitable environment to test 2D SLAM algorithms, since it is
more or less flat. Apart from background trees moving in the
wind it is also completely static.

The first of the two roof datasets includes a fair amount of
maneuvering around two obstacles over a distance of about
45 metres. The second dataset comprises of a slow turn,
a fairly long straight section, a three point turn with some
reversing, and another straight section. The robot covered
about 70 metres. Note that turning increases the process noise
substantially because of wheel slippage.

A few frames of the datasets captured by one of the cameras
are shown in Figure 5.

B. Experimental results

We show the results obtained from two experiments. The
first was done using SURF features on the first dataset, and
the second using SIFT features on the second dataset. These
results are depicted in Figure 7 with corresponding location
errors in Figure 6. We see that the Euclidean error from the
first experiment grows over time. Drift is something that will
be present with any localization system that does not employ
absolute measurements (like GPS). In our work we attempt to
limit this drift as much as possible.

We see that both SIFT and SURF can be used to obtain
accurate results. Although we have no way of measuring
the accuracies of the estimated maps, we can observe some
structure and large quantities of landmarks located on the
obstacles around which the robot moved.

VII. CONCLUSIONS

In this paper we investigated the use of the FastSLAM algo-
rithm with landmarks originating from stereo image features.
We explained how image features can be used as landmarks,
with associated uncertainties in the form of Gaussian distribu-
tions. A measurement function converts features relative to the
robot to landmarks in world coordinates and these landmarks
are then matched over time, and outliers are identified and
rejected. The FastSLAM algorithm then uses a particle filter
to maintain the robot states, and for each particle a set of
separate EKFs to estimate landmark locations.

We tested the system in a controlled simulation environ-
ment, and found that FastSLAM can be as accurate as EKF
SLAM (when landmark matches are uncontaminated) but
has the advantage of being largely unaffected by landmark

0 20 40 60 80 100 120
0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

time (s)

er
ro

r
(m

)

time (s)

er
ro

r
(m

)

Fig. 6. The Euclidean error over time, as measured against DGPS, of the
FastSLAM system using SURF features on the first dataset (top) and SIFT
features on the second dataset (bottom).

−35 −30 −25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

−10 −5 0 5 10 15 20 25 30 35 40 45

−8

−6

−4

−2

0

2

4

6

8

Xw (m)

Y
w

(m
)

Xw (m)

Y
w

(m
)

Fig. 7. Estimated routes (in blue starting at the origin) and maps from the FastSLAM algorithm using SURF features on the first outdoor roof datasets (top)
and SIFT features on the second (bottom) with the DGPS ground truth in red. Markers are placed at every tenth time step of the routes. The landmarks that
we show, as black dots with cyan confidence ellipses, are those that were observed on multiple time steps, i.e. those that contributed to the accuracy of the
route estimation.

mismatches. This advantage of FastSLAM is significant, par-
ticularly when stereo features are used as landmarks, due to the
unavoidable possibility of mismatches occurring. The problem
of mismatches is inherent to image features, that often exhibit
ambiguous characteristics, and we must therefore be able to
rely on the SLAM system to remain stable in spite of such
errors.

We also tested our complete FastSLAM system on data
captured by a real robot. The accuracies achieved with either
SIFT or SURF features are comparable to other state-of-the-art
systems [10] [11].

We conclude that, because of its accuracy and robustness,
FastSLAM can be a very effective algorithm to use with
measurements from a stereo vision sensor.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2006.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping (SLAM): Part I,” IEEE Robotics and Automation Magazine, vol. 13,
no. 2, pp. 99–110, 2006.

[3] A. Doucet, J. de Freitas, K. Murphy, and S. Russel, “Rao-Blackwellized
particle filtering for dynamic Bayesian networks,” Conference on Un-
certainty in Artificial Intelligence, pp. 176–183, 2000.

[4] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”
Proceedings of the AAAI National Conference on Artificial Intelligence,
2002.

[5] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with Rao-Blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[6] D. Lowe, “Object recognition from local scale invariant features,” IEEE
International Conference on Computer Vision, pp. 1150–1157, 1999.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[8] W. Brink, C. van Daalen, and W. Brink, “Stereo vision as a sensor
for EKF SLAM,” 22nd Annual Symposium of the Pattern Recognition
Association of South Africa, pp. 19–24, 2011.

[9] ——, “Probabilistic outlier removal for robust landmark identification
in stereo vision based SLAM,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2822–2827, 2012.

[10] G. Dubbelman, W. van der Mark, and F. Groen, “Accurate and robust
ego-motion estimation using expectation maximization,” IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 3914–
3920, 2008.

[11] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-point RANSAC for
EKF-based structure from motion,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3498–3504, 2009.

