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Abstract—The Microsoft Kinect sensor provides real-time
colour and depth data via a colour and infrared camera. We
present an approach that uses this inexpensive device for 3D
reconstruction from uncontrolled motion. We obtain the intrinsic
and extrinsic parameters of a Kinect by calibration, and find
a mapping from the raw depth data to real world metric
coordinates empirically. With these parameters we are able to
create a dense 3D point cloud reconstruction, with colour data, of
a scene recorded in a single frame by the Kinect. We then adapt a
feature-based approach to align point clouds reconstructed from
different, uncontrolled points of view of the same static scene.
We demonstrate the effectiveness of this approach by means of
examples, and find that success hinges upon the availability and
accuracy of feature matches across the different views.

I. INTRODUCTION

The Microsoft Kinect, released in November 2010, is a
consumer grade 3D sensor, capable of giving as output 11-
bit depth data in real-time, at 30 frames per second, and at a
resolution of 640×480 [1]. This sensor, shown in Fig. 1, was
originally developed to serve as a controller-free input device
for the Xbox 360 but has quickly gained popularity in the
computer vision research community.

The Kinect estimates distance by projecting a fixed infrared
(IR) pattern onto nearby objects which a dedicated IR camera
picks up. The distortion of the pattern, due to the structure of
the scene, reveals depth.

Some applications that may benefit immensely from such a
low cost 3D sensor include the estimation of body position,
gestures and motion for human-computer interaction [2]; map
generation for robotic navigation [3]; obstacle detection and
avoidance [4]; and general 3D object reconstruction.

The Kinect also provides 8-bit colour (RGB) data simul-
taneously with depth data, at the same rate and resolution.
Fig. 2 gives an example. However, it is important to note that
the depth and RGB data are given relative to the IR camera
and RGB camera respectively. This makes simultaneous use
of depth and RGB data non-trivial. Fig. 2 indicates this well,
where it is clear that the IR image is more “zoomed-in” than
the RGB image.

II. PROBLEM STATEMENT AND APPROACH

The objective of this paper is to firstly render a 3D cloud of
points, with colours, from the depth and RGB data captured
by the Kinect, in metric space. After achieving this we want

to align point clouds from consecutive frames (each from a
slightly different angle) to form a dense 3D reconstruction of
a static scene.

We will approach these objectives by dividing the tasks
into two main parts, namely the sensor calibration step and
the application step.

Sensor calibration
• The IR and RGB cameras need to be calibrated sepa-

rately, in order to find intrinsic parameters such as focal
lengths, centres of projection and radial distortion coeffi-
cients for each. This will facilitate the mapping of points
(or pixels) between image and real world coordinates.

• Stereo calibration must be performed on the two cameras
(IR and RGB), to find a relative rotation and translation
from one to the other. This will enable the simultaneous
use of depth and colour information.

• A mapping from raw depth data to real world metric
coordinates needs to be determined, which will aid in the
application step.

Application
• After calibration, pixels in a captured depth image can

be mapped to real world metric coordinates. This will
produce a metric point cloud.

• The point cloud can be projected onto the RGB image
plane, so that each point is assigned a colour value. This
will result in the desired colour point cloud.

• Corresponding features in successive RGB images, taken
of a static scene from different viewpoints, can be
matched to find a relative rotation and translation from
one image to the other. This will assist in point cloud
alignment which in turn may result in a dense 3D
reconstruction.

Fig. 1. The Microsoft Kinect sensor with IR projector, RGB camera and IR
camera visible from left to right.



Fig. 2. Example IR, depth and RGB output images from the Kinect. Depth is calculated onboard from the distortion of the IR pattern and is given relative to
the position of the IR camera. The RGB camera is completely separate and the sensor needs to be calibrated for colour and depth to be used simultaneously.

III. SENSOR CALIBRATION

This section describes our approach for calibrating a Kinect.
It is important to state that the intrinsic and extrinsic parame-
ters we obtain may differ slightly from those of another Kinect,
due to small mechanical inaccuracies in the manufacturing
process.

We first consider single camera calibration, in order to find
the intrinsic parameters of the IR and RGB cameras separately,
and then stereo calibration to find the position and orientation
of the RGB camera relative to the IR camera. Finally we
discuss our approach for inferring a mapping from raw depth
values (as given by the Kinect) to metric 3D coordinates.

A. Single camera calibration

Under the pinhole camera model [5], a point X in some
fixed world coordinate system is mapped to the image plane
of an arbitrary camera by the equation

x = KR
[

I | −c
]
X = PX. (1)

Here X is a 4-element homogeneous vector measured in the
world coordinate system, and x a 3-element homogeneous vec-
tor measured on the image plane from which pixel coordinates
are obtained. The 3 × 3 matrix K is called the calibration
matrix and contains intrinsic parameters such as focal length,
principal point offset and skewness factor. The 3× 3 rotation
matrix R and the inhomogeneous 3-element translation vector
c provide the extrinsic parameters of the camera which relate
the camera’s coordinate system with the world. The 3 × 4
matrix P = KR

[
I | −c

]
is called the camera matrix.

The calibration matrix is of the form

K =

αx s x0

0 αy y0
0 0 1

 , (2)

where αx and αy are the focal lengths in pixels, x0 and y0 the
coordinates of the image centre in pixels, and s the skew factor
[5]. These 5 intrinsic parameters describe the inner workings
of the camera.

A standard way of obtaining the intrinsic parameters is to
capture a known object and observe how it distorts under
the projective mapping introduced by the camera (which is
essentially the multiplication by P). A planar checkerboard,

with known measurements, is often used as calibration object
as corners are easily identifiable in the image and can be
found automatically to a high degree of accuracy. Each of
the imaged corner positions, with its corresponding known
world coordinates (measured on the checkerboard plane), is
substituted into (1). This leads to a linear system from which
P can be solved. We typically use many images of the
checkerboard held at various positions and orientations, to
solve for P robustly in a least-squares sense.

Real cameras, however, rarely adhere to the idealized pin-
hole model. The lens may distort the image in such a way that
straight lines in the world are not straight in the image. This
nonlinear distortion is usually radial, where regions furthest
from the image centre are distorted most. It can be modelled
mathematically, coefficients in a Taylor approximation of this
model can be determined, and the image can thence be
undistorted.

Camera calibration is therefore usually an iterative process:
the linear intrinsic parameters are found, an estimate for
the lens distortion coefficients are obtained and images are
undistorted, the linear parameters are re-estimated from these
new images, the distortion coefficients are updated, and so on
until convergence.

In calibrating the IR and RGB cameras of a Kinect we place
a planar checkerboard in view of both, at various positions and
angles, and capture images. Examples are shown in Fig. 3. The
images are fed to Bouguet’s camera calibration toolbox [6],
[7] which performs iterative optimization in much the same
manner as the process described above.

Fig. 3. An example of the planar checkerboard pattern used for calibration,
as seen by the IR (left) and RGB (right) cameras. These images are used in
calibrating each camera separately, as well as in stereo calibration where they
act as an image pair.



It should be noted that the IR images will always be quite
heavily “corrupted” by the infrared pattern (used to infer
depth) which may cause problems for the corner extractor.
A filter such as the adaptive median filter [8] can be effective
here. In fact, the corners are still fairly salient in the raw IR
images and we can find them quite accurately even in the
presence of noise.

After calibrating the IR and RGB cameras separately we
obtained the following calibration matrices:

Kir =

 593.73 0 315.19
0 591.72 219.72
0 0 1

, (3)

Krgb =

 522.97 0 335.67
0 521.16 243.42
0 0 1

, (4)

rounded for display purposes. Distortion coefficients were also
calculated for each camera.

B. Stereo calibration

Stereo calibration is necessary when a system consists of
two cameras, and finds the rotation and translation from
one camera to the other (i.e. the extrinsic parameters). It
follows the same methodology as single camera calibration,
except that two images of the calibration object are captured
simultaneously by the two cameras. We then know that imaged
features (or corners) of the object will have the same world
coordinates in the two images. This enables the calculation of
a spatial relationship between the two cameras.

Bouguet’s toolbox [6] can be used here as well, on a set
of image pairs, to determine the rotation R and translation c
from one camera (in our case the IR camera) to the other (the
RGB camera). For our Kinect we obtained

R =

 0.99 0.01 −0.05
−0.01 0.99 0.00

0.05 0.00 0.99

, c =

−23.01
3.14
1.74

, (5)

rounded to two decimals for display purposes. Here the
translation is given in millimetres. These parameters suggest
that the two cameras are horizontally about 23mm apart and
almost perfectly aligned (R ≈ I). This agrees with a visual
inspection of the Kinect.

The results in (3), (4) and (5) allow us to write down the
two camera matrices as

Pir = Kir

[
I | 0

]
, Prgb = Krgb R

[
I | −c

]
. (6)

These matrices define a relationship between depth data and
colour data. A remaining issue is that of finding a general
mapping from raw depth data (as returned by the Kinect in
the form of range images) to real world metric coordinates.

C. Mapping raw depth to metric coordinates

The Kinect gives as output 11-bit depth images, each of
which being a 480×640 matrix of values between 0 and 2047
(an example is visualized in Fig. 2). We wish to transform each
of these values to a point in 3D Euclidean space.

It turns out that the value of a particular pixel in the
depth image indicates (in some way) the distance between
the principal plane of the IR camera and a point in the world,
measured perpendicularly to the principal plane through that
pixel [1]. Therefore, if the world coordinate system coincides
with the coordinate system of the IR camera, as it does in
(6), that distance would be the Z-coordinate of the point. By
these arguments we should be able to establish a mapping of
the form Z = f(d), where d is a value in the depth image.

In an effort to determine the mapping f we conducted an
experiment by moving a planar surface orthogonally to the IR
camera’s principal axis at known distances. Depth images were
recorded for distances from 0.5 m to 3.25 m (which is more-
or-less the effective range of a Kinect), in 0.25 m increments.
It should be mentioned that it is difficult to move a planar
surface completely orthogonally to the principal axis but, since
we have access to depth values, the accuracy of this motion
can be measured and fine-tuned in real-time.

The experiment resulted in a depth measurement (retrieved
from the appropriate depth image) associated with every
known distance. A plot of this data, as in Fig. 4, makes it clear
that there may be a linear relationship between the measured
depth values and the inverse of actual depth.

This apparent relationship allows us to infer a general
mapping, using linear least-squares on the depth values and
the inverse of actual distances, as

Z = (3.1055− 0.0028409 d)−1, (7)

where the coefficients are rounded only for display.
X- and Y -coordinates for a pixel (u, v) in the depth image

can be determined straightforwardly by using (2) and (6) to
write Pir

[
X Y Z 1

]T
, i.e. the mapping of point (X,Y, Z)

onto the image plane of the IR camera, asαx 0 x0 0
0 αy y0 0
0 0 1 0



X
Y
Z
1

 =

αxX + x0Z
αyY + y0Z

Z

 , (8)

where αx, αy , x0 and y0 are the intrinsic parameters of the
IR camera (from (3) we assume that s = 0). In order to obtain
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Fig. 4. Depth image data against known distances in metres (left) and the
inverse of known distances against depth data with a least-squares line (right).



the 2D Euclidean version of this vector, which will be the IR
image coordinates (u, v), we divide by the third element so
that

u = αxX/Z + x0, v = αyY/Z + y0. (9)

Rearranging the above yields

X = (u− x0)Z/αx, (10)

Y = (v − y0)Z/αy. (11)

Equations (7), (10) and (11) can be used to map any pixel
(u, v) with value d in the depth image to a point (X,Y, Z) in
Euclidean (real world) coordinates, in our case measured in
millimetres. Fig. 5 illustrates with an example.

IV. APPLICATION

The previous section dealt with the calibration of a Kinect.
We proceed to explain how colours from the RGB image can
be assigned to the 3D point cloud obtained and how various
point clouds, reconstructed from different views of the same
static scene, can be aligned.

A. Assigning colours to the point cloud

Every point in the reconstructed point cloud has homoge-
neous coordinates of the form X =

[
X Y Z 1

]T
, measured

in the IR camera coordinate system. Since the RGB camera is
calibrated with respect to the IR camera we can project such
a point to the RGB image plane by calculating

x = PrgbX. (12)

Note that radial lens distortion mentioned earlier has to be
removed before this projection is performed.

We de-homogenize the vector x to arrive at pixel coordinates
(u, v) in the RGB image. These coordinates may very well be
non-integer, necessitating some form of interpolation (such as
nearest-neighbour, bi-linear or bi-cubic). We end up with a
colour value which can be assigned to the point X. Fig. 6
shows the result of this colour mapping on the point cloud in
Fig. 5 (bi-linear interpolation was used).

Fig. 5. A depth image mapped to a point cloud in Euclidean coordinates.
Here points are coloured in the jet colour scheme according to depth.

B. Point cloud alignment

Next we consider the problem of aligning a number of
point cloud reconstructions of a scene, each taken from a
different vantage point. The viewpoints are uncontrolled but
we will assume that consecutive ones do not differ greatly, for
sufficient overlap to exist.

Suppose we capture n views of some static scene with the
Kinect. Every one of these captured views consists of an IR
image, an RGB image and a depth image. We map the pixels
in the depth image to (X,Y, Z) coordinates, project them to
the RGB image and obtain a colour point cloud. These point
clouds will be given relative to the IR camera and if we can
estimate the motion of the IR camera from one point cloud to
the next, we should be able to transform all the point clouds
to a single fixed coordinate system, say the coordinate system
of the IR camera corresponding to the first view.

The method discussed here is incremental, in the sense that
a new point cloud is aligned with the one preceding it. Every
new alignment will update a total rotation and translation, for
transforming the cloud to the fixed coordinate system.

We exploit the assumption of sufficient overlap, and esti-
mate motion of the RGB camera by means of a feature-based
approach. It will therefore be convenient to transform the
coordinates in a point cloud to the RGB camera’s coordinate
system. This is achieved easily:[

Xrgb Yrgb Zrgb

]T = RT
[
X Y Z

]T + c, (13)

with R and c given in (5).
Features in an image are salient, easily identifiable points

and they typically have associated descriptors (depending on
the feature detection method used). Ideally a descriptor should
be scale, rotational and affine invariant. For this reason we
employ the tried-and-tested Scale Invariant Feature Transform
(SIFT) [9] to detect and match features across consecutive
RGB images. A robust RANSAC estimator [10] can be used to
remove outliers (incorrect matches) and we can then determine
camera motion [5]. Fig. 7 gives an example.

Fig. 6. Every point from the point cloud shown in Fig. 5 is projected to the
RGB image (shown in Fig. 2), and colour is assigned thusly.



Fig. 7. Matching SIFT features determined for the two images shown on
top. Putative matches are shown in the bottom left, and inliers remaining after
RANSAC-based motion estimation in the bottom right.

Suppose, for a pair of RGB images, the estimated motion
that takes the second camera’s coordinate system to the first is
represented by a rotation matrix Rm and translation vector cm.
It is important to note that cm is retrievable only up to scale.
However we can determine this scale, at least in theory, by
using the known metric 3D coordinates of matched features.
These coordinates are at our disposal from the point clouds
constructed by (7), (10), (11) and (12) for each image.

Consider homogeneous image coordinates x1 and x2 that
were found to be a feature correspondence in the two RGB
images. Furthermore let X̃1 be the inhomogeneous 3D coordi-
nates of x1 in the first camera’s coordinate system, and X̃2 the
inhomogeneous 3D coordinates of x2 in the second camera’s
coordinate system. We therefore have

X̃1 = RT
mX̃2 + λcm, (14)

with λ the unknown scale. Rewriting this expression as

λcm = X̃1 − RT
mX̃2 (15)

provides three equations (per feature match) from which λ
can be solved. Due to noise in the depth data and slight
inaccuracies in the estimated motion parameters we opt for
some average over all the solutions of (15), to arrive at a
single value for λ.

This feature-based technique provides parameters Rm and
λcm that describe the motion of a current camera (and
therefore point cloud) relative to the one preceding it. In order
to place all the point clouds through the entire sequence in the
same coordinate system, we initialize a rotation matrix Rtot

to be the identity, and translation vector ctot to be a zero
vector. Then, once Rm and λcm have been estimated for a
new point cloud in the sequence, we update them according
to the following:

Rtot ← RmRtot, (16)
ctot ← RT

tot λcm + ctot. (17)

This total transformation is then applied to the new point
cloud to bring it into the fixed coordinate system. A new point
cloud arrives and the process is repeated: the motion of the
new RGB camera relative to the previous one is estimated,
scale is corrected, the total transformation is updated, and the
new point cloud is transformed accordingly.

V. RESULTS

The methods described in this paper enable us to create a
dense metric point cloud reconstruction, with colour assigned
to each point, of a static scene. In this section we showcase
some example reconstructions. It is difficult to quantitatively
assess the accuracy of these results since independently gen-
erated “ground truth” is not available.

Results from two datasets are shown here. In capturing the
first, a hand-held Kinect made a more-or-less full circle motion
around a man in a chair. Some RGB images of this set are
displayed in the top of Fig. 8. The figure also shows two
partial reconstructions, each viewed from two angles, in the
middle and bottom row. Unfortunately, some motion blurred
RGB images about halfway through the sequence caused a
glitch in the feature detection and matching, and the resulting
erroneous motion estimation propagated through the rest of
the sequence. Still, the set yielded decent and useful partial
reconstructions as can be seen.

Fig. 8. Two partial reconstructions made from a captured dataset (the middle
row shows two views of one, the bottom row two views of the other). Some of
the RGB images of the dataset are shown on the top. Representations of some
of the estimated camera positions can also be seen in the reconstructions.



Fig. 9. A reconstruction made from a second dataset. Two of the RGB
images are shown on top.

Fig. 9 shows images and a view of our reconstruction of
the second dataset, taken of the interior of an office. Due to
the cluttered nature of the scene this set yielded many feature
matches and a good reconstruction was possible.

We note that the success of our alignment procedure hinges
on the success of the feature matching step. Fig. 10 shows
another part of the first dataset where inaccurate matching
caused the alignment to fail. Again, as mentioned before, the
moment a consecutive pair of RGB images delivers a small
or largely incorrect set of matches, the estimated motion of
the sensor becomes unreliable and destroys the rest of the
reconstruction process. The fact that we take an incremental
motion estimation approach causes a single error to propagate
through the rest of the sequence.

Nevertheless, if good feature matching is achieved between
consecutive RGB images, our methods can produce impressive
3D reconstructions.

Fig. 10. This reconstruction shows the effect of inaccurate motion estimation,
caused by too few correct feature matches, in the alignment process. The
misalignment is clearly visible on the face and hands.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have successfully calibrated the IR and
RGB cameras of a Kinect sensor, inferred a general mapping
from its raw depth data to metric world coordinates, and
mapped colours from a corresponding RGB image to the
point cloud. This enabled us to create a metric point cloud
reconstruction (measured in mm) with colour using a single
depth and RGB image pair. A feature-based approach enabled
us to align consecutive point clouds, formed from different
uncontrolled viewpoints, in an effort to build a more complete
dense reconstruction of a static scene. We argued that the
success of this alignment procedure hinges on the quality of
feature matches found between successive RGB images.

Some pre- and post-processing can be useful additions to the
described techniques. Removing the “noise” in IR calibration
images by some filter may aid towards more accurate calibra-
tion. We also note that the structured light technique used by
the Kinect struggles around sharp edges (depth discontinuities)
in a scene. Once the RGB camera has been successfully
calibrated with the IR camera, colour information may become
useful in dealing with noisy edges in the point cloud. We hope
to further improve our motion estimation by the incorporation
of bundle adjustment or the use of an estimator such as the
Kalman filter. Our aligned reconstructions could also be used
as an initialization for a more refined point cloud alignment
procedure such as ICP [11], which in turn could feed back to
our motion estimator.
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