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Abstract—The problem of estimating the positions of players
on a sports field using multiple cameras is considered. A
hierarchical particle filter is used to track the players through
each video sequence. Position estimation is then performed using
multi-view triangulation. We also introduce a feedback loop
whereby 3D data can be fed back to the 2D trackers to correct
errors. Experiments suggest that the system performs well and
yields high accuracy for position estimation, with an average
tracking error less than 10cm.

I. INTRODUCTION

Millions of people around the world follow sports in some
form or another. With all the interest that sport gathers,
spectators and fans are increasingly looking for up-to-date
statistics on all aspects of their game of choice. Much of these
statistics are manually extracted while watching the game or
from video footage after the game has completed.

A system that is able to track players on a field during a
game will be able to automatically provide a range of statistics
that is relevant for analyzing player and team performances.
It will be possible to calculate how much distance players
are covering in a match as well as which areas of the field
they spend the majority of time. This can be used to measure
the work rate of different players on the field or to compare
tactical strategies between teams.

Some work in this field has been done by previous re-
searches. Khan et al. [1] tracked people moving in a building
by comparing the movement of people with camera field of
view lines. Cai et al. [2] also looked at tracking people in
multiple views. People are detected by segmenting the image
into foreground and background, building a model of the
background and comparing the current view to the model.
Foreground regions are then analyzed to detect human shapes
and people are tracked by feature points. While both of these
systems are able to track people in 2D and perform matches
between the cameras they lack some functionality that is
required for 3D tracking. The biggest problem is that neither
of the two solutions are able to calculate the 3D position of a
tracked person. Another problem with the two systems is that
they are unable to track people through occlusions.

A full multi-view 3D tracking systems was developed by
Alahi et al. [3] for tracking players on a basketball court. Using
adaptive mixture models a foreground image is extracted
for each camera. Foreground silhouettes for each camera
are projected onto the ground plane and players are tracked

by matching ground plane projections and modelling player
behaviour.

Another multi-view 3D tracking technique was developed
by Xu et al. [4]. A mask of the field is extracted using
background modelling techniques, and used to detect players
while excluding unwanted regions. Kalman filtering is used
for both 2D and 3D tracking.

In our solution motion detection was found to be a fast
and effective means of detecting players. In order to track
players in each camera view a fast hierarchical approach to
the particle filter is chosen due to it robustness to common
tracking problems. Finally player positions are found using
multi-view triangulation.

The rest of this paper is structured as follows. Section
II explains the camera calibration required for the system
to function. In section III 2D player tracking is discussed.
Estimation of player positions is considered in section IV
and the paper concludes with some results in section V and
conclusions in section VI.

II. CALIBRATION METHOD

In order to perform position estimation of players on a field
the cameras used need to be calibrated to the world around
them. This calibration can be split into two sections: internal
and external calibration.

During internal calibration the parameters pertaining to the
camera itself are calculated. These parameters remain constant
for the camera (the focal length may change, but is assumed
to remain constant) and as such may be calculated before
the system is deployed. A popular approach to perform this
calibration is to use a checker-board pattern where the number
and physical size of squares are known. The corners of each
of the squares on the checker-board can either be detected
automatically or selected by a human. Calibration can then
be performed by using the corners as interest points, with a
method such as the one developed by Tsai [5].

For external calibration several point correspondences are
needed between points with known real-world coordinates and
the image coordinates of those points. A minimum of three
such point correspondences is required and any points may be
used with the restriction that at least three points do not lie
on a single line in space.

A convenient set of points to use is the set of corners made
by intersecting lines on the field. These lines can be accurately
detected and the corresponding intersections found to give the
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Fig. 1. Illustration of the Hough transform for line detection: (a) original
image, (b) Sobel edge detection, (c) Hough transform histogram and (d)
detected lines.

corners. To detect the lines, and through them the field corners,
the Hough transform is used. Figure 1 illustrates. Once the
lines are found the intersection of those lines can be found by
turning to homogeneous coordinates. The standard form for
lines in R2 is ax + by + c = 0, allowing for each line to be
uniquely represented by a coefficient vector l = [a, b, c]T . The
intersection, p, of any two lines represented this way is simply
the cross-product between the two lines:

p = l× l′. (1)

As the real-world coordinates for the corners are known (if
the dimensions of the field are known) they make ideal can-
didates for calibration points. The calibration of the external
parameters can then be done using the work presented in [6].

III. TRACKING IN 2D

Tracking players in 3D through the use of multiple cameras
first requires that the players be tracked in each of the
individual camera sequences. To accomplish this a hierarchical
approach to the particle filter is used. In this approach objects
are represented using several different descriptors. Descriptors
vary from coarse, fast descriptors that may yield many false
positives, to fine but slow descriptors for more precise classi-
fication. Objects are first compared to the coarse descriptors,
and if they are a good match are then passed to the slower
second stage. This hierarchical approach allows for much
faster execution of the filter while maintaining good results.

A. First Stage Descriptors

For first stage descriptors in the hierarchical particle filter
the rectangle features of Viola and Jones [7] are used, specif-
ically those depicted in Figure 2. The descriptors act similar
to a mask that is convolved with the image. At each pixel
location the intensity values of pixels in the region around the
object are added and subtracted. Figure 2 and the following
equation illustrate how the features are calculated using a 9×9

Fig. 2. Illustration of rectangle features used as a tracking descriptor.

block (in our system the block size is closer to 80× 40),

R(i, j) =
4∑

j=−4

[ −3∑
i=−4

I(i, j) +
4∑

i=3

I(i, j)−
2∑

i=−2

I(i, j)

]
.

(2)
These features are chosen as they are very fast to calculate.

Using the integral image [7] further speed increases can be
made. The integral image is such that each pixel value is the
sum of all the intensity values of all pixels to the left or above
the current pixel, and allows extremely fast calculation of the
sum over an arbitrary blocks of pixels in the image.

Two rectangle features are calculated for every particle. The
dissimilarity measure between the calculated feature and the
model feature is taken as the absolute difference between the
two. Particle weights for each feature can now be calculated.
Each particle has two first-stage weights assigned to it, one
for each feature. The weights can be combined either using
the average of the two or by multiplying the two together. An
average of the two will give particles that have a good match in
both features a high final weight, however particles that have
one good and one poor match will still have relatively high
scores. Only particles that score a good match in both features
are of interest, making the multiplication method better suited
to the problem.

B. Second Stage Descriptors

In the second stage of the hierarchical particle filter only
those particles that have a contributable weight after the first
stage, i.e. those that have a first-stage weight greater than
some threshold, are considered. Particles with small weights
after the first stage are considered to be very different to the
object, and by ignoring them in the slower second stage we
gain computational time. In this stage a histogram of oriented
gradients is calculated as a more precise descriptor than the
rectangle features used in the first stage.

The calculation of a histogram of oriented gradients requires
gradient vectors for each pixel in the image. Discrete derivative
operators, such as the Sobel operators, can be used for
this purpose and yield two edge images: Eh that highlights
horizontal edges and Ev that highlights vertical edges. The
magnitude and angle of the gradient vector at each pixel is
then calculated as

M(i, j) =
√

Eh(i, j)2 + Ev(i, j)2, (3)
G(i, j) = arctan [Ev(i, j)/Eh(i, j)] . (4)

Gradients with a magnitude greater than some threshold are
then binned into a histogram according to their angles.



The histograms of all the particles need to be compared
with that of the model in order to arrive at some dissimilarity
value. There are various ways in which the distance between
two histograms can be calculated.

The “city block” and Euclidean distances (i.e. the L1 and
L2 norms) are fast to compute but do not perform adequately
on histograms where the order of the bins carry some meaning.
Consider, for example, three histograms h1 = [1 5 1 1 1 1 1],
h2 = [3 1 3 1 1 1 1] and h3 = [1 1 1 1 3 3 1]. Here h1 and
h2 should be considered as being much closer to one another
than, say, h1 and h3. However the Euclidean distance gives
d(h1, h2) = d(h1, h3) =

√
24.

Distances that measure the difference between discrete
probability density functions can also be used to compare
histograms. Examples include the Kullback-Leibler divergence
and the Bhattacharyya distance. These measures, however, also
fail for the same reason as the L1 and L2 norms.

There are more indicative measures of the distance between
histograms. The earth mover’s distance (EMD) [8], for exam-
ple, regards the histograms as piles of dirt and determines the
minimum cost required to turn one into the other (where cost
is defined as amount of dirt times the distance by which it is
moved). This optimization problem, although linear, is rather
computationally intensive for the purposes of this problem.
Cha and Srihari [9] proposed a measure which is related to
the EMD but is much faster to calculate. Because gradient
orientations range between 0◦ and 360◦, with the endpoints
regarded as equal, the modulo distance measure (as explained
in full detail in [9]) is used.

Particles that were ignored in the second stage due to low
first stage weightings still require a second stage weight for the
filter to propagate forward. As there is no distance measure
calculated for these particles, they are given a second stage
dissimilarity value equal to twice the largest value calculated in
the second stage. The second stage weights for all the particles
can now be calculated.

C. Filter Output and Updating the Filter Model

Once all the first and second stage weights have been
calculated a filter output can be obtained. The first and second
stage weights for each particle are multiplied together, after
which all the weights are normalized to produce a final weight
for each particle. A weighted average of all the particles is
taken to find the filter output X:

X(x, y) =
n∑

i=0

wipi(x, y). (5)

The model that is being tracked must now be updated for the
next iteration of the filter. After finding X the first as second
stage descriptors are calculated around that point, and those
descriptors are used for the next iteration of the filter.

The next section looks at combining the data from the 2D
trackers to estimate 3D position and track players in real-world
coordinates.

Fig. 3. Tracking feedback loop: 2D data is used to calculate 3D points which
are fed back to the 2D trackers for error correction.

IV. 3D TRIANGULATION

Once players are successfully tracked in 2D it becomes pos-
sible to estimate and track their 3D positions. To accomplish
3D tracking the data from the 2D tracking is required for each
player in each view. This 3D data can then be fed back to
the 2D trackers to check and possibly correct errors in the 2D
tracking. This forms a feedback loop as illustrated in Figure 3.

The rest of this section details the processes of combining
the various views, triangulating the player positions and the
feedback loop.

A. Matching Players Between Views

Before triangulation of player positions is possible it is
necessary to match the players between views. Several options
exist when trying to accomplish this, such as shape, colour and
position.

Shape and colour methods operate by quantifying the shape
and/or colour aspects of the person being tracked using, for
example, edge or colour histograms. These histograms can be
compared to histograms of players being tracked in different
views, and should a match be found they are assumed to
be the same player in the different views. These methods
can fail, however, when applied to the problem of tracking
sports players. Colour methods are ineffective as players on the
same team will all be wearing similar clothing. Attempting to
match players in this situation will result in multiple matches
making it impossible to know which is the correct match.
Shape matching on the other hand fails as the player shape
may vary drastically when viewed from different angles.

Position matching estimates the position of the player on the
field from each view individually. This estimation may not be
highly accurate, but it does allow one to identify clusters of
estimated points. These points may indicate the presence of
a player on the field and the corresponding projections of the
players in the 2D views.

The single view estimation begins by finding the line in 3D
passing through the tracked point on the image plane. Once
this line has been found the intersection between the line and
a plane some distance above the field is calculated (according



to [10] the average height of a male in South Africa is 168
cm, indicating a plane 84 cm above the playing field should
be chosen when tracking the center of the player, while the
average height of a female in South Africa is 158 cm indicating
a plane 79 cm above the playing field).

After the intersection points have been calculated they can
be compared to intersection points from different views. If
clusters of intersection points are found close to one another
then a match is made between the different views. If two or
more intersection points from a single view are located close
to each other, i.e. during an occlusion, that location cannot be
assigned with a high level of certainty and it is ignored until
the two tracked players move away from one another. Also
note that once a match has been made, that match remains for
the rest of the program execution and the matching step does
not need to be repeated.

Another advantage of this matching method is that the
calculation of the 3D lines is also required for the triangulation
step. This has the effect that the matching step does not greatly
increase computational time.

B. Triangulating Player Positions

Once all the players are tracked in each of the video
sequences the positions of players can be triangulated on the
field. Two options exist for triangulating from multiple views:
• pairwise, back-projection error minimization;
• multi-view, forward-projection error minimization.
In the first case the object is triangulated for each possible

pair of cameras using back-projection error minimization
technique. This will give 1

2n(n−1) solutions when the object
is visible by n cameras. These solutions may then be combined
to get a final point by taking the average or least-squares of
the set of points. The second option triangulates a single point
using all views in a single step, by minimizing the forward
projection error rather than the backward projection error.

Testing of the two techniques produced similar results,
causing a decision between the two to hinge on computational
speed. In this respect the multi-view triangulation is superior
to pairwise triangulation due to the fact that multi-view
triangulation increases linearly in computational complexity
with the number of cameras while pairwise triangulation is of
order n2.

Triangulation from multiple views presents new challenges,
but also some benefits above two-view triangulation. On the
one hand multiple views provide more information, allowing
for more accurate triangulation. On the other hand it is harder
to combine the data in a computationally inexpensive manner
while keeping a high degree of accuracy. We try to minimize
the projection error ep.

The first step in minimizing ep is to find the projection of
the point X on each of the lines li. Each of the lines li can
be written as li = pi + kni where pi is a point on the line
and ni is a unit vector in the direction of the line. To solve
for each of the lines one begins with the camera equation:

x = KR[I| − C̃]X = KRX̃−KRC̃ (6)

which can be rewritten as

X̃ = RT K−1x + C̃. (7)

Using the camera center, (0, 0, 0)T , and the point on the
image plane through which the line is to be drawn, (x, y, 1)T ,
and substituting for x in equation (7) two points, q1 and q2,
in the real-world coordinate system emerge that both lie on
the desired line. It is now possible to solve for pi and ni:

pi = q1, ni =
q1 − q2

||q1 − q2||
. (8)

The projection, yi, of x on li can then be found as

yi = ninT
i (x− pi) + pi, (9)

with the total projection error

ep =
∑

i

‖yi − x‖2. (10)

We now want to find x that minimizes ep:

ep =
∑

i

‖ninT
i (x− pi) + pi − x‖2

=
∑

i

‖(ninT
i − I)x− (ninT

i − I)pi‖2

=
∑

i

‖Aix− bi‖2

=
∑

i

(Aix− bi)T (Aix− bi). (11)

Taking the derivative of (11) with respect to x and setting it
equal to zero yields

∂ep

∂x
=
∑

i

[
2(AT

i Ai)x− 2AT
i bi

]
= 0∑

i

(AT
i Ai)x =

∑
i

AT
i bi(∑

i

AT
i Ai

)
x =

∑
i

AT
i bi. (12)

Equation (12) is now in a familiar form, Cx = d, allowing
us to solve it using standard linear algebra techniques.

C. Error Correction

When tracking the 3D positions of players using multiple
cameras, this 3D data can be used to increase the accuracy of
the tracking in the individual camera scenes. By comparing
the 3D position obtained by triangulation to an estimation of
the position based only on each view individually it becomes
possible to detect and correct errors in the single view tracking.

After triangulating a player based on the 2D tracking results
a set of distance measures can be calculated between the
triangulated point and the projected point from each camera,
using the Euclidean distance. This projected point is the
same point as calculated in section IV-A when finding player
matches.

If any of the distance measures are greater than some
threshold it may indicate that there is a problem with the



Fig. 4. Triangulation of two image sequences using forward (green dots) and
back projection (blue dots) methods. The solid blue line indicates the ground
truth.

corresponding 2D tracking. To correct this error the player’s
location is triangulated a second time, using only tracking
results from those trackers where the distance measure is
below the threshold. This new 3D point, X, is then projected
back to the discredited views using the standard camera
equation:

x = PX. (13)

The tracker corresponding to that player in that view can
then be restarted at the calculated point x. If less than two of
the projection points fall within the threshold then there is no
reliable way to determine which of the trackers have failed and
which of them are still accurate. In this case the player may
need to be dropped from 3D tracking and all corresponding 2D
trackers stopped. The player will then be detected and tracked
again as a new entity as if it is a new player on the field.

V. EXPERIMENTS

To test the system that was developed several test were
completed. The first test was to measure the accuracy of the
3D position estimation of a single player running on a field.
Figure 4 shows the results for four such sequences. The solid
blue line in each figure is the ground truth path that the
humanoid ran over, as viewed from above. The blue points
are the back projection results and the green points are the
forward projection results.

This test indicates that triangulation results for the two
methods are similar. This test also indicates that the proposed
tracking and triangulation method succeeds at locating a
player on the field of play. In the given figures one unit of
measurement corresponds to 2 cm on a real-life field. The
maximum deviation from the ground truth between the four
sequences is 20 units (40 cm) while the average deviation is
about 5 units (10 cm).

In Figure 5 the results of the full system can be seen
for tracking 4 players as seen in 4 views over 286 frames

Fig. 5. Results for tracking four players with four views though 286 frames.

Fig. 6. Tracking a player crossing the field of view line of a camera, shown
here from a top down view.

(roughly 10 seconds). The coloured dots indicated the tri-
angulated position for each player through the sequence.
The approximate position of the cameras are shown by the
little camera drawings. As can be seen from this figure the
system as a whole functions as desired: detecting, tracking
and triangulating each of the players. This is, however, an ideal
case and further testing of some possible problem scenarios
needs to be done.

During full system testing two cases of interest were identi-
fied. The first case is when a player leaves or enters a camera
field of view and the second is when a 2D tracker loses its
player due to occlusion.

In Figure 6 the solid lines indicates field of view boundaries
of the different cameras, and the blue dots indicates the path
followed by the player. At point (a) the player moves out of
the view of the camera indicated by the green lines. At this
point the corresponding 2D tracker is stopped and the player
is triangulating with the remaining views. At point (b) the
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Fig. 7. Automatic correction of tracking occlusion. Frame numbers are listed
on the left of the images.

Fig. 8. Triangulation results of the multi-view tracking in Figure 7, as viewed
from above.

player again moves back into the field of view of the camera
and is then again tracked in that view. Single view position
estimation showed that this view corresponded to the player
already being tracked the player is then triangulated using the
data from that view as well.

The second case is illustrated in Figure 7, where in one
view the two players move in such a way that the one player
occludes the other whilst in the other two views they move
apart from each other. In frame (1) the players are a distance
away from each other. By frame (10) they have started to
occlude each other and at frame (32) they are heavily occluded.
As can be seen at frame (48) the tracker indicated by the blue
square has begun to track the incorrect player. At this point
the system detected that the 2D tracker has lost the player
and moved from the correct path and attempts to correct the
mistake. In frame (49) the 2D tracker in the first view has
been corrected by back projection after triangulating the player

using the rest of the views. By frame (57) the 2D tracker has
corrected itself and is tracking the player correctly again.

The plot of the players’ positions in Figure 8 illustrates the
effect of this occlusion. At point (a) the triangulation result
begins to drift from the ground truth line. At point (b) the 2D
tracker is corrected and the triangulation results snap back to
the correct ground truth line.

VI. CONCLUSIONS AND FUTURE WORK

In this paper the problem of estimating the 3D position of
players on a sports field using multiple cameras was discussed.
A system was developed, using motion detection to find
players, a fast hierarchical particle filter to track players in
2D, and multi-view triangulation to find player positions.

The results obtained for the system were very promising
overall. While some improvements can be made the system is
able to solve the initial problem to a satisfactory extent. Oc-
clusions present some problems, however the use of multiple
cameras goes some way to solve this.

Some future work that may improve the system would be
to remove the fixed block size used in 2D tracking. This may
allow cameras to view larger areas of the field as players do
not need to appear in some specific size in the image. Using
a player recognition algorithm may also improve both 2D and
3D tracking results. Trackers can correctly distinguish between
players after occlusions by recognising the player they need to
track. More precise matching of players between views may
also be possible if recognition is used rather than just position
matching.
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