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Abstract—We propose a method for combining dense stereo
matching on calibrated images with automatic camera motion
estimation, in order to generate dense reconstructions from
uncalibrated image sequences. In doing so we explain how
standard stereo matching can be extended, and for the estimation
of motion we also introduce a technique for dealing with scale
ambiguity and loop closure (a solution to the latter is termed déjà
vu correction). Results from experiments are given and discussed,
and we find that the proposed method can provide useful 3D
information from uncalibrated image sequences.

I. INTRODUCTION

Multiple view reconstruction is concerned with the building
of a three-dimensional geometric model of some physical
object, given a sequence of images taken of the object from
various viewpoints. Techniques for retrieving and measuring
shape information are useful for a wide variety of applications
in autonomous robotics, industrial design and prototyping,
human-computer interaction, augmented reality, medical imag-
ing, archaeology, and many others. Digital cameras are often
chosen to be used as capturing devices in these systems, par-
ticularly for their passiveness, portability, relatively low cost,
high capturing speed and the potential richness of information
in the output.

Most methods for performing object reconstruction from
multiple images can be categorized broadly into shape-based
methods and point-based methods. Shape-based methods at-
tempt to extract the contours of an object from each view and
combine these to build a 3D shape that is consistent with all of
them [1]. Point-based methods search for corresponding points
on the surface of the observed scene in two or more images
and, if the relative translation and rotation of the camera
between those images are known or can be established, then
point locations in 3D are attainable through a triangulation
procedure [2]. We will focus mainly on point-based methods
but, towards the end of the paper, show that the incorporation
of some shape information can be useful.

Point-based methods can be subdivided further into pixel-
based methods and feature-based methods. The former at-
tempts to find for every single pixel in an image a matching
point in the other image, if it is visible in both views. Feature-
based methods first detect salient, and therefore reliably
matchable, features in every image independently and then
match them across the different views. Pixel-based methods

produce dense reconstructions, while feature-based ones would
typically yield a sparser but more accurate set of points.

As mentioned, the motion parameters (translation and rota-
tion) of each camera are needed. In many cases we can assume
them to be known, which would imply that some form of
calibration had to be performed [3] or that the movement of
the camera was highly controlled [4]. Images for which the
camera motions are known are said to be calibrated. In other
cases, however, the images may not be calibrated. Agarwal
et al. [5], for example, considered the intriguing problem of
reconstructing parts of the city of Rome using a vast number
of uncalibrated images from Flickr. In the uncalibrated case
the camera motion parameters need to be estimated from
the observed images before 3D structure of the object can
be determined. A typical approach here is to match salient
features in different images and, based on their 2D disparities
between the views, infer relative camera motion.

Since camera motion estimation relies on feature detection
and matching, approaches for reconstructing objects from
uncalibrated images are normally feature-based. Dense recon-
struction methods, on the other hand, are usually reserved
for cases where calibrated images are available. In this paper
we propose a method that essentially combines the two ap-
proaches in an effort to generate dense reconstructions from
uncalibrated images. Effective means of combining the two
have received relatively little attention in the literature to date,
with the exception of work by Lhuillier and Quan [6].

We first provide some background of stereo geometry and
matching in the calibrated case, then discuss a method for
estimating camera motion parameters in the uncalibrated case.
We propose a means to deal with the scale ambiguity that is
inherently present and describe a simple way of performing
so-called déjà vu correction on the estimated camera matrices.
Our combination of motion estimation and stereo matching is
explained, and results are presented from experiments on a
test data sequence.

II. STEREO MATCHING ON CALIBRATED IMAGES

Stereo vision is a widely studied approach that uses images
captured by two synchronized cameras in order to infer depth
of the observed scene. The problem of generating dense
reconstructions from a pair of calibrated images amounts to
finding for every pixel in the one image a matching pixel in



the other image. Although this problem has received much
attention for a number of decades [7], it remains challenging.

This section describes in brief some geometric properties
that can be exploited in order to constrain the search for
correspondences, and the method of hierarchical dynamic
programming that we find to be a good compromise between
accuracy and speed.

A. Stereo geometry

Figure 1 depicts a typical stereo setup in which two cameras
with optical centers c1 and c2 view a point X in 3D space.
The point X projects onto the image plane of the first camera
at point x1, and onto the second image plane at point x2. Note
that the image planes are drawn in front of the optical centers,
merely for ease of understanding.

In order to formulate the projections mathematically, we
define two camera matrices as

P1 = K1R1

[
I | −c1

]
, P2 = K2R2

[
I | −c2

]
. (1)

Here Ri is a 3× 3 rotation matrix, and ci a 3× 1 translation
vector, that relates the coordinate system of camera i with
that of the world (in which X is defined). The 3× 3 matrices
K1 and K2 contain internal parameters of the two cameras
which include focal lengths, possible offsets in image center
and skewness factors [8]. It then follows that

x1 = P1X, x2 = P2X, (2)

where x1 and x2 are specified in 3D homogeneous coordi-
nates, and X in 4D homogeneous coordinates.

Clearly, if for x1 the match x2 can be obtained, and if P1

and P2 are known, X can be determined. In the calibrated
case, where P1 and P2 are known, the crucial problem of
finding matching points between the two images remains.

Note in Fig. 1 that the plane passing through points c1, c2

and x1, called the epipolar plane, also passes through x2. This
implies that the sought-after match for a point x1 in the first
image must lie on the straight line, called the epipolar line,
defined by the intersection of the epipolar plane and the second
image plane. Moreover, this line is completely specifiable from
x1 and the positions of the two camera centers.

The process of image rectification builds upon these search
constraints by attempting to projectively transform the images
in such a way that the epipolar lines are perfectly parallel and
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Fig. 1. A typical stereo configuration where a point X projects to coordinates
x1 and x2 in two images respectively. The search for a match for x1 can be
constrained to a single line through image 2.

horizontal, as this would narrow the search for the match of
a point in the one image down to a single image row in the
other image. The image planes must therefore be transformed
so that they are coplanar and parallel to the line through c1

and c2, and we need to find a suitable rotation matrix Rn and
intrinsic calibration matrix Kn that will do this.

Kn can be chosen arbitrarily, but a simple choice would be
the average of K1 and K2. The rows of Rn are calculated as

r1 =
c2 − c1

||c2 − c1||
, r2 =

k× r1

||k× r1||
, r3 = r1 × r2, (3)

where k is the unit vector in the direction of the principal ray
of camera 1, such that

Rn =
[
r1 r2 r3

]T
. (4)

The following transformation matrices are defined:

T1 = KnRnRT
1 K−1

1 , T2 = KnRnRT
2 K−1

2 , (5)

which implies that x′1 = T1x1 provides the coordinates in
the rectified image corresponding to x1 in the original image.
Similarly, x′2 = T2x2 is the rectified version of x2.

Since point correspondences between rectified images are
known to occur on corresponding rows, the match for a pixel
in one image can be represented by a single value, called its
disparity. It is simply the horizontal shift that takes the pixel’s
current position to the position of its match.

An important issue to take note of is that of occlusions,
which occur when some object or feature is visible in one
image but not in the other. Assuming camera 1 is to the left
of camera 2, we distinguish between left-occlusions (occluded
from the left camera’s point of view) and right-occlusions
(occluded from the right camera’s point of view).

B. Hierarchical dynamic programming (HDP)

When images can be rectified (i.e. when the images are
calibrated) the stereo correspondence problem becomes a
matter of matching every pair of coinciding rows pixel-wise
in the two images. In order to accomplish this some way
of measuring the dissimilarity between two pixels is needed.
The smaller such a dissimilarity, the more likely it should be
that two pixels are a good match. Options range from simple
absolute differences, which would be quick to calculate but not
particularly reliable, to more computationally taxing methods
designed to yield better results [9].

In order to perform the matching between two image rows,
we choose a hierarchical approach to dynamic programming
because of the good balance between accuracy and computa-
tional efficiency. The method is explained in some detail in
[10] and [11], and we provide a brief description here.

Given two rows of pixel values, one from each image, the
first step would be to build a disparity space image (DSI). It
is a matrix containing dissimilarity values for every possible
disparity in some pre-specified range. Figure 2 shows a DSI
for two synthetic image rows, where the absolute difference
was chosen simply for illustration purposes.
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Fig. 2. A disparity space image (DSI) created from two synthetic image
rows. The true matches are indicated in grey.

It is worth stressing that only non-negative disparities are
considered at this stage, as it is assumed that camera 1 is to
the left of camera 2 and their optical axes are parallel.

The aim is now to find some minimum cost path through
the DSI, which then yields an optimal set of matches between
the two image rows. A further restriction is put in place that
prohibits the path from backtracking. It is referred to as the
ordering constraint and implies that if one object appears to
the left of another in image 1, it will also be to the left of that
other object in image 2. This is not always true, if for example
thin objects close to the cameras are present, but renders the
optimization problem far more tractable.

Dynamic programming (DP) can be called upon for solving
this optimization problem. It divides the problem into smaller
subproblems recursively and can be implemented quite effi-
ciently. A further significant decrease in execution time can be
obtained by performing hierarchical DP. The images are down-
sampled several times, DP is applied to the lowest sampling
level, its result is propagated to serve as an offset in the next
higher level, and DP on this higher level is restricted to a band
around the offset. The process is repeated up to the highest
(hence original) sample level. This hierarchical approach is
useful not only for increased speed but also provides some
smoothness across the rows. Standard DP, on the other hand,
considers every pair of rows independently and may therefore
yield unwanted inconsistencies across the rows.

We will explain an extension of this approach that attempts
to match corresponding epipolar lines in a sequence of un-
calibrated images, but first a method for estimating camera
matrices from such a sequence is discussed.

III. ESTIMATING UNKNOWN CAMERA MOTION

Next we consider a sequence of uncalibrated images. By
this we mean that the extrinsic parameters, i.e. translation and
rotation, of the cameras are unknown. We assume at this stage
that the intrinsic parameters (focal length, camera center, etc.)
are known. A simple method for finding these parameters for
a single camera is explained in [12].

The feature-based approach discussed in this section follows
a standard technique to find camera matrices between consec-
utive pairs of images. We then discuss an effective means of
combining these relative camera motions to find positions and
orientations of all the cameras in a single fixed coordinate

system. Déjà vu correction and bundle adjustment are also
discussed briefly.

A. Feature detection and matching

As mentioned we follow a feature-based approach to find
the relative rotation and translation between two consecutive
cameras. The assumption is, of course, that the camera motion
was small enough so that enough corresponding features are
visible in the images.

The popular scale invariant feature transform (SIFT) [13] is
an obvious choice for detecting and matching salient features
in two images. Figure 3(b) shows example output, where
every line segment indicates a match between image 1 and
2 (image 1 is shown in the background for reference). We
observe that many incorrect matches are present. A stricter
matching scheme may remove many of these but at the risk
of losing some correct ones. Instead, an iterative RANSAC-
based approach [14] can be followed in an effort to identify
the largest set of matches that conforms to a physically
possible camera motion. Since incorrect matches do not have a
consistent structure they will not form such a set, and it should
be possible to identify the correct set even when the number
of incorrect matches far exceeds the number of correct ones.

B. Pairwise estimation of camera matrices

From a set of putative feature matches it is possible to find
the relative camera motion from one image to the other. We
observe that, for any pair of matching image coordinates x1

(a) two sample images from an uncalibrated sequence [15]

(b) putative matches (c) inlier matches

Fig. 3. Matching SIFT features determined for the two images shown on
top, and the inliers obtained by RANSAC.



and x2, there exists a single 3× 3 matrix E such that

x̂T
2 Ex̂1 = 0, (6)

with x̂1 = K−1
1 x1 and x̂2 = K−1

2 x2, where K1 and K2

are the internal calibration matrices of the two cameras. This
matrix is called the essential matrix and, following from its
definition, is specifiable up to scale. It is also known that E
has a determinant of zero [8] hence there are 7 degrees of
freedom and we need at least 7 matches to determine it.

The RANSAC-based approach we follow operates by
choosing a set of 7 matches randomly from the available
ones, calculating E from (6), and counting the number of
other matches that agree with it. These inlier matches form
a consensus set and the procedure is repeated until a large
enough consensus set is obtained. An example of such a set
is shown in Fig. 3(c).

The singular value decomposition (SVD) of the essential
matrix is determined, and the resulting matrices are used
to find the rotation matrix R and translation vector c that
describes the motion of the camera from the first image to the
second image (see [8] for details). It is important to be aware
of a scale ambiguity that presents itself here. If no information
about absolute scale is available it is not possible to determine
the physical distance between the cameras. The translation
vector is therefore usually normalized such that ||c|| = 1.

Camera motion estimation can be performed for consecutive
pairs of images in a sequence and the motion of each new
camera will then be determined relative to the previous one,
such that the distances between cameras are normalized. The
next section describes a technique that places all the cameras
in a single coordinate system as well as a possible remedy for
the unknown relative scale issue.

C. One coordinate system for all cameras

The motion estimation procedure described above finds a
rotation matrix and translation vector for every camera, relative
to the preceding camera. In order to use information from all
the images for reconstruction, it is necessary to move these
relative motions to one coordinate system.

Suppose R′i and c′i denote the rotation matrix and transla-
tion vector obtained from estimating the motion from camera
i − 1 to i, and that there are m images (hence cameras) in
total. Since these parameters give the position and orientation
of camera i relative to camera i − 1, the following can be
computed:

R1 = I, R2 = R′2, Ri = R′iRi−1, (7)
c1 = 0, c2 = c′2, ci = αiRT

i−1c
′
i + ci−1, (8)

for i = 3, . . . ,m. It gives the rotation matrix Ri and
translation vector ci associated with camera i. The values
of αi are not yet specified, and indicate the scale factors
that need to be corrected for (recall that the pairwise motion
estimation procedure fixes the distance between a pair of
cameras arbitrarily to be 1). The overall scale cannot be
established, for the same reasons as mentioned above, but

it should be possible to fix distances between the cameras
relative to, say, the distance between camera 1 and camera 2.

Suppose xi−2, xi−1 and xi denote image coordinates in
images i − 2, i − 1 and i > 2 respectively, such that xi−2

and xi−1 was identified as an inlier match as was xi−1 and
xi. Clearly, these two pairs of image coordinates that form
matches must triangulate to the same point in space, say X.
Our aim is to fix the scale between cameras i−1 and i, given
that the scale is already fixed for cameras i− 2 and i− 1, so
that the two triangulated points coincide.

To this end, let X be the point resulting from triangulating
xi−2 and xi−1 and let Pi = KiRi

[
I | −ci

]
. We force the

point triangulated from xi−1 and xi to coincide with X so
that, by virtue of (2) and (8),

0 = xi ×PiX = x̂i ×Ri(X̃− αiRT
i−1c

′
i − ci−1), (9)

where x̂i = K−1
i xi and X̃ is the Euclidean version of the

homogeneous vector X, so that X = [X̃T , 1]T . Therefore[
x̂i ×Ri(X̃− ci−1)

]
−
[
x̂i × αiRiRT

i−1c
′
i

]
= 0, (10)

yielding

αi (x̂i ×R′ic
′
i) = xi ×Ri(X̃− ci−1), (11)

from which αi can be determined so that ci can be found. We
would typically compute a scale factor for every available set
of matches that overlaps between the three images and choose
a final value for αi as some average of the results.

D. Déjà vu correction

Quite frequently, particularly in multi-view reconstruction
scenarios, the camera makes a loop around the object of
interest or, similarly, the object is placed on a turntable and
undergoes a full rotation. The position of the last camera
is then typically close to the first one, allowing pairwise
motion estimation to be performed on camera m and camera
1. However, because the first camera is fixed at the origin
by equations (7) and (8) and subsequent pairwise estimation
is subject to drift, the position and orientation of camera 1
relative to that of camera m may yield an inconsistency.

Alleviating this problem is referred to as déjà vu correction
in autonomous navigation (the robot realizes it has been at
some place before, which clashes with its believed location,
and updates its position estimation history accordingly).

We propose the following simple correction. Camera mo-
tion parameters Ri,1 and ci,1 are determined for cameras
1, 2, . . . ,m in that order. We then also apply the method to
find the motion from image m to image 1, obtain parameters,
say, Rm+1 and cm+1, and let

Ri,2 = RT
m+1Ri,1, ci,2 = ci,1 − cm+1. (12)

Note that these new parameters are equivalent to ones that
would have been obtained by estimating motion for cameras
1,m,m− 1, . . . , 2 in that order.



It then remains to combine ci,1 and ci,2, as well as Ri,1

and Ri,2, in some sensible way. For that we have experimented
with

ci =
(

m+1−i
m

)
ci,1 +

(
i−1
m

)
ci,2. (13)

Ri is obtained similarly as a weighted average of Ri,1 and
Ri,2 (since the matrix must remain orthogonal, rotation pa-
rameters are extracted from Ri,1 and Ri,2, and their weighted
averages are used to determine Ri). The weights specified in
(13) place more importance on parameters that were calculated
sooner in the queue, which should then minimize drift.

E. Bundle adjustment

In a final attempt to increase the accuracy in the estimated
positions and orientations of the cameras, a technique known
as bundle adjustment (BA) [16] can be applied.

For n distinct points in space viewed by m cameras BA
adjusts all the camera motion parameters and 3D coordinates
of reconstructed points, in order to minimize the sum of
squared differences between the actual locations of features
in the images (as determined by SIFT, for example) and the
locations obtained from re-projecting the 3D points onto the
image planes. The Levenberg-Marquardt algorithm [17], [18]
has proven to be extremely successful in solving this nonlinear
optimization problem.

IV. DENSE MATCHING ON UNCALIBRATED IMAGES

We now discuss our technique of utilizing dense stereo
matching algorithms in an uncalibrated scenario where a se-
quence of images is given, with no camera motion information
available. The idea is quite straightforward. Camera motion is
estimated for the sequence by the method described, images
are rectified, and dense stereo matching is performed on the
rectified images. There are, however, some slight adaptations
that need to be made.

A. Adapting the stereo matching algorithm

Pairs of images are rectified by the transformations given in
(5), rendering the epipolar lines horizontal. A stereo matching
algorithm can now be performed on the two rectified images,
but two issues should be taken note of.

Firstly, image coordinates may now be negative, to avoid
unwanted cropping of the rectified images. Also, image data
in a row no longer starts at some fixed column, and these
offsets for the different rows should be accounted for.

Secondly, provision should be made for negative disparities.
It is clear from Fig. 3(c) that some corresponding features may
shift to the left from one image to the other while others shift
to the right. We allow for negative disparities by extending the
DSI to also contain negative disparities, and allow an optimal
path through the DSI to cross the zero-disparity axis.

B. Match propagation

The fact that a sequence of images (not only two) is
available should be exploited. We have used this fact to our ad-
vantage somewhat, in fixing the relative scale changes between
pairs of cameras. Normally in stereo vision a matching pair

of coordinates xi−1 and xi is triangulated in order to obtain
a point in space. However, now that a dense set of matches
is at our disposal for all pairs of consecutive images, every
match under consideration can be propagated forwards and
backwards through the sequence until occlusions are reached.

This procedure results in a sequence of pairwise matches,
all corresponding to the same feature in space (assuming
that the stereo algorithm was successful). Each one of these
matches provides a candidate 3D position. We combine them,
for example by taking a median to decrease the occurrence of
obviously incorrect outliers, and arrive at a single point.

C. Incorporating image segmentation

A further improvement in accuracy and quality of the
reconstruction is attainable from the inclusion of segmentation
information. A clear distinction between pixels belonging to
the object and those belonging to the background would be
extremely useful in constraining the stereo algorithm to match
foreground segments only of every corresponding pair of
rows. Moreover, accuracy of the output will be improved and
computational cost will be lowered.

Of course, segmenting arbitrary images into foreground and
background is by no means trivial, and this improvement in
accuracy and speed comes at the cost of having to implement
a sufficiently robust segmentation algorithm.

V. RESULTS

We implemented the methods described above and present
here some experimental results obtained.

The test data used was obtained from [15] and consists of
26 images of a marble sculpture, two of which are shown
in Fig. 3(a). The exact movement was uncontrolled during
capturing but the camera more-or-less followed a ring around
the object of interest and ended up in a position close to where
the first image was taken.

Figure 4(a) depicts the estimated camera positions we
obtained from the pairwise approach described in section III.
Images were processed counterclockwise from camera 1 as
shown. Because of this pairwise estimation of motion we
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Fig. 4. Top-down view of the estimated positions and orientations of the
cameras, and reconstructed features, for the test sequence (a) before déjà vu
correction and (b) after. Note in particular the positions of camera 26.



Fig. 5. Final reconstruction of the marble sculpture, as viewed from various angles. The 3D point cloud consists of 681,237 vertices and was obtained from
26 images taken all around the object with a hand-held camera (dataset available at [15]). Background points have been cropped for the sake of clarity.

should expect drift but, rather surprisingly, the last camera’s
estimated position is fairly close to where we expect that it
should be. The slight drift does influence the reconstruction
negatively, however, as can be seen in the reconstructed points.

The camera configuration in Fig. 4(b) is the result of our
déjà vu correction procedure, whereby camera motions are
estimated in the opposite direction (starting from 1 and moving
clockwise), and combined with those obtained previously
in a weighted manner. Note that the obvious errors in the
reconstruction have been reduced significantly.

Once camera motions are known, points can be triangulated.
A final reconstruction is shown in Fig. 5, from different view-
points. We also applied the technique of match propagation
described, both forwards and backwards through the image
sequence, and it appears to remove most erroneous points that
result from the triangulation of incorrect matches.

It should be realized that the reconstructed point cloud
shown in the figure is raw output from the algorithm and could
be perfectly suited for any number of different post-processing
procedures (such as smoothing and surface fitting).

VI. CONCLUSION

We have presented a method for generating dense recon-
structions from uncalibrated image sequences. The method
estimates relative motion pair-wise, and transforms all the
estimated camera poses to a single coordinate system. The
scale ambiguity is resolved by forcing overlapping matches
across different pairs of images to triangulate to equivalent
points in space. We also introduced a procedure for correcting
drift in the case of loop closure that seemed to work well.
Stereo matching is performed on rectified pairs of images
and we recommended a hierarchical version of dynamic pro-
gramming to find an optimal set of matches for each pair of
corresponding epipolar lines in two images. It is not without
fault but our match propagation procedure seems to eliminate
many incorrectly triangulated 3D points.

It is important to stress that we have not tested the accuracy
of the proposed method, as no ground truth was available
for the test set, and further investigation is needed. However
we have demonstrated that the method can be successful
in providing useful 3D information from an uncalibrated
sequence of images.

In future we hope to move away from the requirement that
the internal camera calibration parameters are known, and
rather attempt to estimate them from the image data. The
combination of the proposed method with image segmentation
is another exciting prospect.
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