
Combining motion detection and hierarchical particle filter tracking
in a multi-player sports environment

Robbie Vos, Willie Brink

Department of Mathematical Sciences
University of Stellenbosch, South Africa
vosrobbie@gmail.com, wbrink@sun.ac.za

Abstract
We consider the problem of detecting and tracking players on
a sports field in a grayscale video sequence from a fixed cam-
era. Motion detection is performed as a separate subsystem, to
locate moving objects and pass them to a tracker, and involves
background modelling by fast rectangle features and blob de-
tection. A particle filter is utilized for the tracking of objects,
by a fast hierarchical approach, based on rectangle features and
histograms of oriented gradients. Experiments suggest that the
system as a whole performs well and may also be fast enough
for real-time applications. Problems do occur from time to time
but mainly due to challenging occlusions.

1. Introduction
Accurate detection and tracking of humans in a video sequence
from a single fixed camera are of great interest to a wide range
of fields — security and sports applications being two principal
examples. In this paper we consider the problem of detecting
and tracking a number of moving people simultaneously, specif-
ically in a multi-player sports environment like soccer or field
hockey. Successful detection and tracking would allow for the
extraction of statistical data related to, for example, distances
covered by individual players and where on the field they spend
time. It might also serve as a useful input for a more sophisti-
cated statistical analysis of tactics and strategies adopted by the
different teams.

The problem of tracking sports players, as opposed to say
pedestrians on the street, poses many challenges. The move-
ment and variation in pose of a sports player is often complex,
quick and abrupt, and therefore hard to predict. Interaction
among the players in a sports environment often lead to per-
plexing occlusions from the camera’s point of view, and may
cause a substantial amount of uncertainty in the identification
of individuals.

On the other hand, a sports environment also places some
useful restrictions on the general problem of human detection
and tracking. The background is usually fairly uncluttered and
predictable and, because players are restricted to the field, the
camera can be calibrated to the scene beforehand and fixed for
the duration of a game.

If statistical analysis of a game in its entirety is the only ob-
jective it may suffice to only capture the necessary video data
during the game and then perform tracking off-line at a later
stage. A system functioning in real-time, however, facilitates
things like online analysis, critical event detection that may re-
quire immediate action, live broadcast annotations and even au-
tomatic commentary. For these reasons we regard real-time ex-
ecution as a high priority.

In this work we are also interested in tracking players
specifically in grayscale (as opposed to colour) video se-
quences. This type of input not only implies cheaper hardware
but also poses an interesting question from a research point of
view: can sports players be detected and tracked successfully
without the use of colour cues?

The task of locating objects, in this case sports players, in
a video can be divided into two parts: detection and tracking.
Here we provide a short summary of some of the main tech-
niques for each.

Much work has been conducted in the area of automatic hu-
man detection from images and video. Techniques include su-
pervised learning approaches that match object and non-object
templates [1], feature-based methods such as scale-invariant
features [2] and histograms of oriented gradients [3], and
matching of parts methods [4]. These and other techniques are
known to produce good results but are, in general, rather slow.
Applicability is also often limited to the detection of pedestri-
ans on the street and therefore allow only small variations in
appearance and pose.

We opted for a motion detection approach as it tends to be
much faster than those methods that detect by recognition. Es-
sentially, moving objects in a current video frame are isolated
by comparison with some model of the background [5, 6, 7]. A
trained classifier can then decide which of these moving objects
are in fact humans, a task that should be relatively straightfor-
ward given the constraints in a sports environment. The accu-
racy of motion detection may not always be on par with that
of object detection methods, but in a video sequence it is usu-
ally not of utmost importance that a player be detected at the
first possible moment. This last point is particularly valid when
computation speed is important.

The second part, after detection, is tracking. A good
overview of different tracking approaches developed recently
is given in [8]. A popular choice is the use of particle filters,
for their versatility, speed and robustness. Song et al. [9] com-
bine the particle filter with probabilistic detection, while Yang
et al. [10] take a hierarchical approach with edge and colour
features.

For the tracking part of this work we adopt ideas from [10]
but, since colour is not available, we rather use some rectangle
features (akin to those used by Viola and Jones [11]) and edge
orientation histograms.

The rest of the paper is structured as follows. Section 2
discusses our approach to motion detection and the link between
the motion detector and the tracking system. Section 3 provides
a brief overview of the particle filter and a discussion of how it
is used. Some experimental results are given in section 4 and
we conclude in section 5.

2. Motion detection
A popular approach for performing motion detection in a video
sequence is to compare the current frame to some model of the
static background, in an attempt to isolate moving objects. This
procedure is often referred to as “background subtraction”.

The procedure outlined in this section performs motion de-
tection in three stages: (i) a difference image is first created by
means of background subtraction; (ii) regions of abundant mo-
tion are then extracted; and (iii) those regions are analyzed and,
if deemed valid, passed to the tracking subsystem.

2.1. Difference image

The first step in the motion detection process is background
subtraction. A model of the background is needed for this pur-
pose, to which the current frame can be compared. Pixel regions
that differ substantially from the background model are then in-
terpreted as motion. Although sophisticated background mod-
elling techniques are available, a notable example being one that
does it by a mixture of Gaussians [6], a main objective of ours
is speed and we therefore opt for a simpler approach that turns
out to be highly effective.

For the construction of a background model we utilize rect-
angle features [11] and average them over a number of previous
frames. We use specifically the 2-rectangle feature depicted in
Figure 1(a). Let Is(i, j) denote the grayscale intensity of the
pixel at row i and column j in frame s of the sequence. Rect-
angle features can be computed for that frame to give a feature
image Fs, where

Fs(i, j) = Is(i, j) + Is(i, j + 1)

− Is(i + 1, j)− Is(i + 1, j + 1). (1)

We experimented with different choices of rectangle features
(horizontal, vertical, diagonal, etc.), and found the vertical one
shown in Figure 1(a) to be most successful. It can of course be
explained by the fact that, if the camera is not tilted, people tend
to exhibit more vertical edges (if standing up fairly straight) and
move more in a horizontal direction across the frame.

The background model Mk associated with the current
frame k is determined as a weighted average of the feature im-
ages of the previous p frames, i.e.

Mk(i, j) =

k−1∑
s=k−p

ws Fs(i, j), (2)

where p is the memory length of the model. The value of p
should be chosen with the background situation in mind: if the
background remains static p can be increased to give a more
accurate model, while a smaller value of p would imply faster

(a) (b) (c)

Figure 1: A depiction of (a) the 2-rectangle feature, and (b) &
(c) some 3-rectangle features. An image is convolved with one
of these masks. Black indicates regions of negative elements
and gray regions of positive elements in the mask.

updating of the model. The symbol ws in equation (2) indicates
some weight attributed to frame s. We assume here without
loss of generality that wk−p +wk−p+1 + . . .+wk−1 = 1. The
weights may be chosen constant, in which case all frames carry
the same importance, or chosen such that wk−p < wk−p+1 <
. . . < wk−1 to facilitate a “fading memory”.

Note that the background model is constantly updated, in
fact at every frame, to accommodate variations in light inten-
sity, unforeseen camera motion, and motion due to non-player
objects such as trees in the background or spectators. The rect-
angle features are extremely quick to determine, so that this
constant updating of the background model is by no means a
computational bottleneck.

After specifying a background model Mk for the current
frame k, a difference image Dk is created simply as the absolute
difference between Fk and Mk, i.e.

Dk(i, j) = |Fk(i, j)−Mk(i, j)|. (3)

Every value in Dk is interpreted as a sort of likelihood of mo-
tion occurring at the corresponding pixel. Figure 2 shows an
example frame and its difference image (normalized for display
purposes). Observe that the shadows of the players are hardly
visible in the difference image. This is another exceptionally
useful effect of the chosen rectangle features. The background
model consists of relative pixel differences so that, for example,
grass in sunlight and grass under a cast shadow are viewed as
being equal (or at least close to being equal).

Figure 2: One frame from a grayscale video sequence and
the difference image resulting from our background subtraction
procedure. Note that shadows hardly appear in the difference
image.

2.2. Extracting regions of motion

In the next stage we search for sizable regions of high density
in the difference image that would appear as a result of objects
(hopefully players) that move against the background.

Firstly the difference image is convolved with an averaging
filter of some specified size (2a + 1)× (2b + 1). It yields what
we refer to as the motion image Nk associated with frame k,
such that

Nk(i, j) =
1

(2a + 1)(2b + 1)

i+a∑
s=i−a

j+b∑
t=j−b

Dk(s, t). (4)

This averaging process serves two purposes. Firstly the motion
values of individual pixels are summed over a neighbourhood so
that regions with high motion density stand out. Secondly re-
gions containing a small amount of motion, likely due to noise,
are flattened. Figure 3 shows on the left the motion image cor-
responding to the frame in Figure 2. Regions containing a large
amount of motion are clearly visible.

Figure 3: A visualization of the motion image corresponding to
the frame in the previous figure (left), and objects extracted by
the detection of dense motion blobs (right).

Objects can now be extracted from the motion image by,
for example, a blob detection method. A fast and easy tech-
nique for isolating different objects, that we found to be very
successful, is to simply threshold the motion image by some
value t, and then perform a connected-components labelling.
Of course, the choice of t has some effect on the outcome. A
smaller threshold may produce many false detections whereas
a larger threshold, although less prone to false detections, may
miss some of the objects of interest. We explore the effect of t
further in section 4. Figure 3 (right) shows a result of this pro-
cedure performed on the motion image shown on the left, where
every extracted object is highlighted by the bounding box of its
corresponding component (or blob) in the motion image.

2.3. Passing objects to the tracker

The final step in the motion detector considers the extracted re-
gions, those believed to correspond to individual moving ob-
jects in the current frame, and creates a list of objects that should
be added to those that are already being tracked. Each detected
object is placed in one of the following three categories:

1. an object already being tracked;

2. an object not yet tracked but under consideration;

3. an entirely new object.

Objects are placed in the first category if they are found to
be in close proximity to objects from the previous frame that are
already being tracked. They are excluded from the list of new
objects to be passed to the tracker.

There is also a “possible object” queue that contains ob-
jects currently under consideration for tracking (those that fall
into category 2 above). An object has to appear consistently in
several frames (say 5 or so) before it is passed to the tracker.
The motivation behind this is simply to avoid passing false de-
tections to the tracker. If the position of an object in the current
frame is found to be close to an object already in the queue, it
falls into category 2 above, and the corresponding element in the
queue is updated. Because objects need to remain in the queue
for a number of frames before being passed to the tracker, those
that are not updated at the current frame are discarded. New
objects (category 3) are simply added to the queue.

Objects that remain in the queue long enough are passed to
the tracker, to be included among those that are already being
followed.

3. Tracking
The tracking of moving objects is performed by a particle filter.
We adopt a hierarchical approach [10], where objects are rep-
resented by several different descriptors. The tracker begins by

calculating fast first-stage descriptors that are coarse and may
yield many false positives. Good matches are then passed to
a second stage where slower, more robust descriptors are cal-
culated. Such a hierarchical approach allows for considerable
speed-ups in the execution of the particle filter.

3.1. The particle filter

The particle filter can be seen as a non-linear generalization of
the Kalman filter. It also allows for the noise models to be non-
Gaussian. Here we provide a brief overview of how we utilize
the particle filter. For a more in-depth discussion, including a
derivation, the reader is referred to [12].

Basically, the “particles” in the particle filter represent pos-
sible solutions to the tracking problem. In our case each particle
would represent possible (x, y)-coordinates for the object being
tracked. Particles are adjusted iteratively according to the model
equations governing the motion of the objects being tracked.
After this adjustment each particle i is compared to some ex-
pected model (or template) and assigned a distance value di,
such that di = 0 would indicate an exact match and a greater
value of di would imply lesser accuracy.

Every particle is given a weight according to its distance
value, as follows:

wi = exp(−d2
i /(2σ2)). (5)

The weights of all the particles are then normalized so that they
sum to 1. Note the manner in which the value of σ scales the
distances. A large σ means that the values of d2

i /(2σ2) are
closer together. The weights of the particles would then change
slowly because the weights of poor matches do not differ greatly
from those of good matches. Hence the filter places more em-
phasis on the model equations than on the particle matches. The
opposite holds for a small σ value.

There are two popular choices when it comes to the output
of the particle filter, which should be the “best” estimate of the
object’s current position. One is to return simply the particle
with the largest weight. The other is a weighted average of all
the particles, where the state of each particle (in our case posi-
tion coordinates) is weighed by its wi value. We use this second
option in our implementation.

An important issue worth mentioning is that of particle
degradation. After several iterations the weights of many parti-
cles may drop down to zero or values very close to zero. In such
a situation it is useful to perform particle re-sampling, allowing
for more particles to contribute towards the tracking.

3.2. Descriptors

When using the particle filter to solve a problem one needs to
decide on the nature of the particles. For the problem in this pa-
per the particles are chosen to be coordinate pairs that represent
possible locations of the object that we are tracking. Various
descriptors are then calculated in a neighbourhood around the
pixel represented by each particle.

The descriptors that are calculated for each particle are
compared to some model value that corresponds to the expected
value of the tracked object. After the final weights for all the
particles have been calculated, the output of the filter is calcu-
lated as the weighted average. Model values for the various
descriptors, that will be used in the next frame of the video se-
quence, are then calculated for this point.

3.2.1. First-stage descriptors

For first-stage descriptors in the hierarchical particle filter we
again turn to the rectangle features of Viola and Jones [11], this
time those depicted in Figure 1(b) and (c). These features are
chosen because of the speed at which they can be computed.
Further efficiency is possible here by computing them from in-
tegral images; see [11] for details.

Two rectangle feature descriptors are calculated for every
particle. The absolute difference between those and the ex-
pected features of the model is calculated, and weights are ob-
tained using (5). Every particle now has two weights, one for
each rectangle feature. In order to determine a final first-stage
weighting, the two weights can be multiplied together as this
causes a high score for only those particles that have a high
matching score in both cases (for both features).

3.2.2. Second-stage descriptors

Only those particles that have contributable weights from the
first stage, i.e. those that have a first-stage weight greater than
some threshold, are carried through to the second stage in the
hierarchical filter. Here a histogram of oriented gradients [3]
is computed as it is a more precise descriptor than rectangle
features.

The calculation of a histogram of oriented gradients re-
quires gradient vectors for each pixel in the image. Discrete
derivative operators, such as the Sobel operators, can be used
for this purpose and yield two edge images: Gh that highlights
horizontal edges and Gv that highlights vertical edges. The
magnitude and angle of the gradient vector at each pixel is then
calculated as

m(i, j) =
√

Gh(i, j)2 + Gv(i, j)2, (6)
α(i, j) = arctan [Gv(i, j)/Gh(i, j)] . (7)

Gradients with a magnitude greater than some threshold are
then binned into a histogram according to their angles.

The histograms of all the particles need to be compared with
that of the model in order to arrive at some distance value. There
are various ways in which the distance between two histograms
can be calculated.

The “city block” and Euclidean distances (i.e. the L1 and
L2 norms) are fast to compute but do not perform adequately
on histograms where the order of the bins carry some meaning.
Consider, for example, three histograms h1 = [1 5 1 1 1 1 1],
h2 = [3 1 3 1 1 1 1] and h3 = [1 1 1 1 3 3 1]. Here h1 and
h2 should be considered as being much closer to one another
than, say, h1 and h3. However the Euclidean distance gives
d(h1, h2) = d(h1, h3) =

√
24.

Distances that measure the difference between discrete
probability density functions can also be used to compare his-
tograms. Examples include the Kullback-Leibler divergence
and the Bhattacharyya distance. These measures, however, also
fail for the same reason as the L1 and L2 norms.

There are more indicative measures of the distance between
histograms. The earth mover’s distance (EMD) [13], for ex-
ample, regards the histograms as piles of dirt and determines
the minimum cost required to turn one into the other (where
cost is defined as amount of dirt times the distance by which
it is moved). This optimization problem, although linear, is
rather computationally intensive for our purposes. Cha and
Srihari [14] proposed a measure related to the EMD but much
faster to calculate. Because gradient orientations range between

0◦ and 360◦, with the endpoints regarded as equal, we use their
modulo distance measure (as explained in full detail in [14]).

First- and second-stage weights are multiplied and the
weights of all the particles are normalized to produce the fi-
nal particle weights used for estimating the current position of
every tracked object in the frame.

4. Experiments
In this section we examine the performance of the various com-
ponents of the system by experimenting on a few video se-
quences of field hockey players. The motion detector is first
evaluated as an individual system. We then investigate how well
the motion detection stage performs in its primary role of pass-
ing objects to the tracking system. Finally the success of the
tracker is considered.

4.1. Motion detection

The motion detection subsystem was applied to two video se-
quences of 200 frames each. Two quantities were measured:
precision and recall. Precision is a measure of how accurate the
detection is and is calculated as the number of correct detec-
tions (players) divided by the total number of detections. Recall
gives an indication of how complete the detection is and gives
the number of correct detections divided by the number of ob-
jects (in this case players) that are actually present. Of course,
ideally these two values should both be as close as possible to 1.
In an effort to measure precision and recall, manual annotation
of the video frames were performed.

A crucial user-specifiable parameter affecting precision and
recall in the motion detection system is the threshold t discussed
in section 2.2. It specifies the amount of motion needed for a
blob to be classified as a moving object. Table 1 below lists the
obtained precision and recall for the two video sequences, for a
few different values of the threshold t.

The poor performance of t = 5 in both sequences comes
as a result of over-detection. Many regions that do not actu-
ally contain moving objects are falsely detected. An increase
in t leads to fewer false detections but, at some stage, starts to
exclude true objects from being detected (i.e. low recall).

Most of the missed and incorrect detections occur as a result
of one player occluding another or when two players are close
together. In the first case only the player visible to the camera
is detected correctly. In the second case it may happen that
neither of the players is detected correctly because they appear
as one large blob. Figure 4 gives an example of each of these
two problems. Missed detections can also result from players
standing still or moving very slowly for a long period of time.

Sequence 1
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.60 0.85 0.94 0.97 0.99
Recall 0.77 0.87 0.84 0.52 0.33

Sequence 2
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.78 0.91 0.94 0.95 0.98
Recall 0.76 0.85 0.77 0.54 0.15

Table 1: Precision and recall of the motion detection on the two
video sequences. The threshold t specifies the amount of motion
necessary in a region for it to be classified as a moving object.

Figure 4: Typical examples of situations causing faulty detec-
tions: one player occluding another (left) and two players in
close proximity to each other (right).

4.2. Passing detection results to the tracker

The experimentally obtained precision and recall of the motion
detector, as a stand-alone system, are not bad but not excep-
tionally good either. However, as mentioned before, it is not
that important that a player be detected at the very first possible
instance.

Far more crucial is the motion detector’s success rate at
passing players to the tracker. Recall that an object needs to
be detected for n frames before eventually being passed on. For
these experiments we used n = 5. In order to investigate the
success of the motion detection stage in the larger tracking sys-
tem, we measure the following 4 quantities:

(i) average number of frames taken to pass a new object to
the tracker;

(ii) number of true objects missed entirely and never passed
to the tracker;

(iii) number of incorrect detections (non-players) that are
passed to the tracker;

(iv) number of true objects correctly passed to the tracker.

These measurements are presented in Table 2 for the two test
video sequences. Table 3 lists for each of the players visible
in the two sequences the number of frames that she is in view
before being passed on to the tracker by the motion detector.

In the first sequence there are no missed or incorrect han-
dovers. The average time taken by the motion detector to hand
over players is rather slow but, as is apparent from Table 3, this
is mainly due to the two players. The first of these (a4) entered
the scene in close proximity to another player and only once
she moved away from the other player was she picked up by the
motion detector as a separate object. The second player with a
long detection time (a5) was the goalkeeper, who stood still for
a long time, and was only detected after significant movement.

The missed detection in the second sequence resulted from
a player that entered the scene in close proximity to another
player, towards the end of the video, and never moved far
enough away from the other player for her to be detected as
a new player. The incorrect detection in the second sequence

Sequence 1 Sequence 2
(i) avr time per handover 27.3 14.8

(ii) missed players 0 1
(iii) incorrect handovers 0 1
(iv) correct handovers 6 11

Table 2: Measurements indicating the success of the motion de-
tection system at its primary role of handing over correct ob-
jects to the tracker.

Sequence 1
player a1 a2 a3 a4 a5 a6

detection time 5 8 19 35 88 9

Sequence 2
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

5 5 5 5 5 5 5 5 8 15 100

Table 3: Detection times for all the players in the two video se-
quences. Each is given as the number of frames that the player
is in view before being passed to the tracker by the motion de-
tector.

came as a result of slight camera movement so that the back-
ground model was, for a short period of time, inaccurate. Player
b11 also entered the scene in close proximity to another player,
hence the longer detection time.

4.3. Tracking

Without an independent set of tracking results to measure our
tracking system against it is difficult to perform a meaningful
evaluation. As such we provide here some examples of how the
tracker functions in a number of different situations: a “normal”
sequence of frames, a sequence containing a partial occlusion,
and one that contains a full occlusion.

Figure 5 depicts the tracking results for a sequence of 100
frames of two players. The last frame in this sequence is shown,
and the small yellow dots indicate the paths followed by each of
the tracker region centers. In this sequence the tracker success-
fully follows the targets.

A partial occlusion (from the camera’s point of view) occurs
when one player covers part of another for some period of time.
If the area of occlusion is small so that most of the partially
occluded player remains visible, the tracker is able to follow
her correctly. Figure 6 shows an example before, during and
after such a partial occlusion.

In a full occlusion one players obscures another more-or-
less completely. Figure 7 shows an example. In this case the
tracker loses the occluded player and may, after the occlusion
when the two players separate, erroneously follow the occlud-
ing player. This may happen because (in our current system)
template models are updated rather quickly so that, in the event
of a full occlusion, both trackers may lock onto the front-most
player.

Figure 5: Depiction of tracking results on a sequence of 100
frames. The dots indicate estimated positions of the players for
every frame.

Figure 6: Before, during and after a partial occlusion. The
tracker successfully follows the partially occluded player.

Figure 7: Before, during and after a full occlusion. The tracker
on the occluded player locks onto the wrong player after the
occlusion due to incorrect model updating.

4.4. Speed performance

The various components of the system were designed with
speed of execution as a high priority. We implemented a proof-
of-concept in Matlab (which is notoriously slow). The motion
detection runs at about 4 frames per second, which does not de-
pend significantly on the number of players in view. The speed
of the tracker is more dependent on the number of object being
tracked, as separate filters run on each. The table below lists
the speed, in number of frames per second (FPS), for various
numbers of tracked players.

number of players 1 2 3 4 5
FPS for tracking 6.5 3.4 2.4 1.7 1.4

Apart from executing compiled code (such as C++), further
speed increases would be possible from the parallelization of
various parts. The entire calculation of the motion image is a
prime candidate.

5. Conclusions and future work
In this paper we considered the problem of locating and track-
ing sports players in a grayscale video sequence. We developed
a reliable and fundamentally fast motion detector that passes
new players entering the view to a tracker. A particle filter per-
forms the tracking, and is optimized for speed by a hierarchical
approach with fast descriptors.

Experiments show that the motion detector, despite its sim-
plicity, maintains high levels of accuracy. Missed or incorrect
detection do occur from time to time, but the detector succeeds
well in its primary role of eventually finding players and disre-
garding false detections before passing them to the tracking sys-
tem. Currently the tracker functions well when players main-
tain a reasonable distance from one another, but may deteriorate
slightly in the presence of occlusions.

Future work may include a more integrated combination of
the motion detection results with those of the tracker, for more
precise tracking. This integration may also prove useful in de-
tecting and handling occlusions, so that the filter tracking an

occluded player can be reset after the occurrence of the occlu-
sion. Some form of player recognition, based for example on
face or digit recognition, can also be implemented to boost the
tracker’s confidence in telling players apart after an occlusion.

6. Acknowledgments
We thank the National Research Foundation for financial assis-
tance. We also thank McElory Hoffmann and Ben Herbst for
insightful discussions regarding the particle filter.

7. References
[1] H. Schneiderman, T. Kanade, “A statistical method for 3D

object detection applied to faces and cars”, IEEE Com-
puter Vision and Pattern Recognition, 1746–1759, 2000.

[2] D. G. Lowe, “Object recognition from local scale-
invariant features”, International Conference on Computer
Vision, 2:1150–1157, 1999.

[3] N. Dalal, B. Triggs, “Histograms of oriented gradients
for human detection”, IEEE Computer Vision and Pattern
Recognition, 2:886–893, 2005.

[4] K. Mikolajczyk, C. Schmid, A. Zisserman, “Human de-
tection based on a probabilistic assembly of robust part
detectors”, European Conference on Computer Vision,
1:69–81, 2004.

[5] T. Horprasert, D. Harwood, L. S. Davis, “A statistical ap-
proach for real-time robust background subtraction and
shadow detection”, ICCV Frame Rate Workshop, 1–19,
1999.

[6] C. Stauffer, W. E. L. Grimson, “Adaptive background mix-
ture models for real-time tracking”, IEEE Computer Vi-
sion and Pattern Recognition, 2:2246–2252, 1999.

[7] A. Elgammal, D. Harwood, L. Davis, “Non-parametric
model for background subtraction”, European Conference
on Computer Vision, 2:751-767, 2000.

[8] P. F. Gabriel, J. G. Verly, J. H. Piater, A. Genon, “The
state of the art in multiple object tracking under occlusion
in video sequences”, Advanced Concepts for Intelligent
Vision Systems, 166–173, 2003.

[9] X. Song, J. Cui, H. Zha, H. Zhao, “Probabilistic detection-
based particle filter for multi-target tracking”, British Ma-
chine Vision Conference, 223–232, 2008.

[10] C. Yang, R. Duraiswami, L. Davis, “Fast multiple object
tracking via a hierarchical particle filter”, International
Conference on Computer Vision, 1:212–219, 2005.

[11] P. Viola, M. J. Jones, “Rapid object detection using a
boosted cascade of simple features”, IEEE Computer Vi-
sion and Pattern Recognition, 1:511–518, 2001.

[12] M. Hoffmann, K. Hunter, B. Herbst, “The hitchhiker’s
guide to the particle filter”, 19th Sympsium of the Pattern
Recognition Association of South Africa, 33–38, 2008.

[13] Y. Rubner, C. Tomasi, L. J. Guibas, “A metric for distribu-
tions with applications to image databases”, International
Conference on Computer Vision, 59–66, 1998.

[14] S.-H. Cha, S. N. Srihari, “On measuring the distance be-
tween histograms”, Pattern Recognition, 35:1355–1370,
2002.

