
Real-time stereo reconstruction through hierarchical DP and LULU filtering

François Singels, Willie Brink

Department of Mathematical Sciences
University of Stellenbosch, South Africa
fsingels@gmail.com, wbrink@sun.ac.za

Abstract
In this paper we consider the correspondence problem for
stereo-vision systems, where the aim is to reconstruct a scene in
3D from information captured by two spatially related cameras.
Our main focus is to obtain dense reconstructions in real-time.
We take a hierarchical approach to dynamic programming be-
cause of the good balance between accuracy and speed. We also
apply a fast one-dimensional LULU filter at the various levels
in the hierarchy for noise removal and scanline consistency. A
sub-pixel refinement technique is also presented. Several ex-
periments are reported on to illustrate the exceptional success
of our approach at producing high quality results in near real-
time.

1. Introduction
“Making computers see” — a problem that has been around for
as long as the term robot has existed. One aspect of this prob-
lem is to estimate depth from the input provided by a number
of cameras. Approaching it with the use of two cameras to gen-
erate a dense 3D reconstruction, which is termed stereo-vision,
is akin to the way humans perceive the world. If we generate
these reconstruction at near real-time rates it allows for some
interesting applications, including:

• mobile robotics for obstacle avoidance, SLAM, naviga-
tion, etc.;

• body and pose tracking for human-computer-interaction;

• augmented reality where virtual objects are inserted in
real world scenes;

• background subtraction/substitution.

The general problem in reconstructing a dense 3D model
using stereo cameras can be summed up as follows: for each
pixel in one image find a corresponding pixel in the other im-
age. A combination of these correspondences and information
of how the two cameras are related spatially facilitates the gen-
eration of 3D coordinates for each pixel, by triangulation.

When we say we aim to solve this problem in near real-time
we define successful completion of this quest as being able to
process each frame and produce results as fast as possible, but at
least before the next set of input images become available. The
frame rate at which the cameras operate restricts the amount of
time available for calculations and, in return, the amount of time
required determines the achievable frame rate.

The intricate part of a stereo-vision system, that of finding
corresponding pixels between the two images, can be simpli-
fied by rectifying both images to remove radial distortion and
transforming one image in such a way that each scanline (row
of pixel intensities) in one image follows the same epipolar line

left image right image disparity map

3D reconstruction of the scene

Figure 1: An example of a dense 3D reconstruction from a
stereo pair of images.

as its corresponding scanline in the other image. This reduces
the search for a corresponding pixel to one line.

The distance between the coordinate of the reference pixel
and that of the corresponding pixel in the other image is called
its disparity. A map of disparities for every pixel in the refer-
ence image is the desired output of a stereo algorithm, and can
easily be used to reconstruct a 3D model of the captured scene
(assuming that the spatial relationship between the cameras is
known).

Many different algorithms for calculating disparity maps
have been attempted, each with its own advantages and disad-
vantages. Scharstein and Szeliski [1] provide a description and
detailed evaluation of many techniques. Examples include:

• sum of squared differences (SSD);

• dynamic programming (DP);

• graph-cut optimization (GC).

The SSD algorithm is fast and highly parallelizable but finds
correspondences very much on a local scale and is extremely
prone to errors. The GC technique, on the other hand, solves
a massive optimization problem and yields spectacular results
but is computationally incredibly demanding, requiring typi-
cally minutes to process a single pair of images.

Since speed is of great importance in a real-time system
we have chosen to adopt a hierarchical version of the DP al-
gorithm [2]. We further compensate for the so-called scanline
inconsistency problem (resulting from a lack of intra-scanline
smoothness) by the implementation of a LULU filter.



2. Stereo-vision
Stereo-vision refers to the calculation of 3D points from the in-
formation in two spatially related cameras. This section pro-
vides an overview of the basic principles behind stereo-vision.
We first provide a short description of epipolar geometry and
how 3D coordinates can be calculated from a pair of corre-
sponding points. We then explain image rectification and how
it simplifies the search for corresponding points. Lastly we
define and discuss the terms occlusion and disparity. A de-
tailed description of stereo camera calibration, i.e. determining,
among other quantities, the relative position and orientation of
one camera to the other, is considered beyond the scope of this
paper and the reader is referred to [3].

2.1. Epipolar geometry

Figure 2 depicts a diagram of a stereo. C1 and C2 are the cam-
era centers in world coordinates, L and R are the image-planes
of the left and right cameras, x1 and x2 are the corresponding
points of the same feature in their respective image-planes and
X is the 3D position of that feature. If we assume camera ma-
trices of the form

P1 = K1R1

[
I − C̃1

]
and P2 = K2R2

[
I − C̃2

]
, (1)

where K1 and K2 contain the intrinsic parameters of the two
cameras, and R1 and R2 describe the rotation of each camera,
then

x1 = P1X and x2 = P2X. (2)
Since our aim is to reconstruct a 3D model from the images
we need to work in the opposite direction from x1 and x2 in
order to triangulate X . This triangulation is straightforward.
The difficulty of stereo-vision is finding for a given point x1 its
corresponding point x2.

For a dense reconstruction we need to find corresponding
points for every pixel in one image. If L is the reference image
and x1 and x2 are measured in pixel coordinates, then for every
pixel x1 in L we need to search through every possible pixel
in R to find a “best” match, which of course implies a horren-
dous amount of computation. Luckily the search space can be
reduced drastically by the use of epipolar geometry.

We specifically use the fact that, according to epipolar ge-
ometry, the plane defined by the ray from C1 through x1 (and
eventually through X) and the line from C1 to C2 cuts through
R in a single line, called an epipolar line. Finding x2 is thus
limited to a search along the epipolar line. To make the search
even simpler we can make use of image rectification which is
discussed next.

Figure 2: The epipolar geometry of two cameras.

2.2. Rectification

Image rectification builds upon the search constraints pre-
scribed by epipolar geometry by attempting to projectively
transform the images in such a way that the epipolar lines are
perfectly parallel and horizontal. This would narrow the search
for a correspondence down to a single scanline. Transforming
such that the epipolar lines are parallel will require that the two
image planes are coplanar. In an attempt to limit the distortion
that a projective transformation causes, one should try to setup
the cameras so that they are both more or less, and as closely as
possible, facing the same direction perpendicular to the baseline
(the line between C1 and C2).

Note that we need to rectify only one image, by mapping
that image to the plane containing the other one. If the original
camera matrices are P1 and P2 as defined before, and we wish
to map the image produced by P2, we define a transformation
T as

T =M1M
−1
2 , (3)

where Mi denotes the KiRi component of Pi for each camera.
Any point x2 is now mapped according to

x′2 = Tx2, (4)

such that x′2 is the point on the rectified image. Figure 3 illus-
trates.

Figure 3: An illustration of the image rectification process.

The next issue to consider is possibility that there might not
be a true match for every pixel in the reference image. A certain
feature in the reference image could be obscured, or occluded,
from the view of one of the cameras. This topic is covered in
the next section.

3. Hierarchical DP for stereo
In this section we present some detail of the algorithm chosen
for finding corresponding points in a pair of stereo images. First
we provide some basic definitions of occlusions and disparities,
and also give a few possibilities for dissimilarity measures. The
normal dynamic programming (DP) algorithm for stereo-vision
is then explained, after which we discuss how hierarchical DP
is performed.

3.1. Definitions

The definitions discussed here are widely used in stereo-vision,
and worth taking note of no matter what algorithm is used.



3.1.1. Occlusions and disparity

The phenomenon that occurs when some object or feature is
visible in one image but not in the other is called an occlusion.
Figure 4 gives an example of a view through a slit or gap. Oc-
cluded areas are marked in gray. Left-occlusion areas, i.e. areas
not visible in the left camera view, are denoted by Locc and
right-occlusion areas, i.e. areas not visible in the right camera
view, are denoted by Rocc.

Figure 4 also illustrates what is meant by disparity. The
pixel x∗2 has the same coordinates as x2, but in the second im-
age. If x′2 represents the same feature then the distance from x∗2
to x′2 is the disparity associated with x2. Therefore the disparity
of a pixel represents the distance that the pixel has moved from
one image to the other. Intuitively, the larger the disparity the
closer that feature is to the cameras.

Figure 4: Examples of left- and right-occlusion areas, depicted
in gray. The disparity associated with pixel x2 is also marked
as the distance from x∗2 to x′2.

3.1.2. Dissimilarity

For every pixel in a scanline of one image we should attempt
to find a match in the same scanline of the other (rectified) im-
age. In order to accomplish this some way of measuring the
dissimilarity between two pixels is needed. The smaller such a
dissimilarity, the more likely it is that the two pixels are a good
match. There are various approaches of measuring dissimilarity
ranging from simple but unreliable to reliable but computation-
ally expensive.

A simple method would be to calculate the absolute differ-
ence between two pixels, as

D(Lyx, Ry(x−d)) =
∣∣Lyx −Ry(x−d)

∣∣ , (5)

where Lyx is the xth pixel in scanline y of the reference image
L and Ry(x−d) is the pixel in the other image it is being com-
pared with (i.e. d is the current candidate disparity offset). This
method is extremely cheap but not robust.

The second possible method seeks to improve upon the pre-
vious one by summing over a small window around the pixels
in L and R, and then using the difference between the sums.
Hence

D(Lyx, Ry(x−d)) =
1

n

x+a∑
i=x−a

y+b∑
j=y−b

∣∣Lji −Rj(i−d)

∣∣ , (6)

where n = (2a + 1)(2b + 1) is the number of pixels in the
window. If we allow the center of the window to shift we can
also compensate for edges in the image.

The method for measuring dissimilarity we prefer is one
proposed by Birchfield and Tomasi [4]. It is insensitive to sam-
pling because it considers the linearly interpolated intensities
around pixels, as Figure 5 illustrates. Values IR− and IR+ are
first determined as the linearly interpolating values halfway be-
tween Ry(x− d) and its two immediate neighbours. The min-
imum and maximum values of the set {IR−, IR+, Rx−d} are
then obtained, which we denote by Imin and Imax. The func-
tion

D(Lyx, Ry(x−d)) = max {0, Imin−Lyx, Lyx−Imax} (7)

determines the dissimilarity. Observe that if Lx lies be-
tween Imin and Imax then D(Lyx, Ry(x−d)) is 0, otherwise
D(Lyx, Ry(x−d)) equals the minimum distance between Lx

and the nearest boundary of the interval [Imin, Imax].

Figure 5: The dissimilarity measure we use, proposed by Birch-
field and Tomasi [4]. See text for details.

3.1.3. Disparity space image

The disparity space image (DSI) is a matrix containing the dis-
similarity values of two scanlines for every disparity in some
range. Figure 6 shows two synthetic scanlines for illustration
purposes. For the sake of simplicity in this example the abso-
lute difference method given in (5) was used. For each disparity
value d the scanline R is moved to the right by one pixel and
then subtracted from L. The resulting DSI already gives us a
hint as to where the matches should be. Correct matches are
marked in gray. The diagonal arrows indicate right-occlusions
and the vertical arrows indicate left-occlusions.

We have now covered all the necessary basic definitions,
and can move onto the algorithm that finds optimal matches
through the DSI.

Figure 6: The disparity space image (DSI) for two synthetic
scanlines. The true matches of the two scanlines are indicated
in gray.



3.2. Dynamic programming

Dynamic programming is a process of solving a problem by
dividing it into smaller problems recursively, solving the small-
est problem first and using its answer to solve a slightly bigger
problem, and so on. In stereo-vision the problem of finding
the minimum cost path through the DSI can be solved in this
manner. If we are able to calculate the minimum cost path up to
a certain point in the DSI we can use that cost to calculate the
cost of adding any point the path can move to next.

The possible moves a path can make in the DSI from a given
point are shown in Figure 7. For the point (d, x) in the DSI, i.e.
at location x in the scanline on disparity level d, the path could
have originated from any white block and can go to any gray
block next. By allowing the path to move in only one of these
directions we enforce an ordering constraint. Horizontal moves
incur a matching cost, since it implies that we are at the correct
disparity and only the dissimilarity of the destination is added
to the cost of the path. Diagonal and vertical moves incur an
occlusion cost, since these moves imply that we are not at the
correct disparity. In such a case the dissimilarity value carries
little meaning. The occlusion cost is a user-specifiable value
that should be expensive enough so that the path will rather fol-
low a match. At the same time it should also be cheap enough
so that it does not become too expensive to jump a few disparity
levels through the occlusion to reach the correct matches.

We wish to calculate the minimum cost path for every pixel
in a scanline, starting from the origin and working our way
through the DSI left to right and top to bottom. After com-
pletion we can backtrack our way through the optimal path
and simply map the disparities to each point on the scanline.
At every point we compare the costs of the path coming from
(d+1, x), from (d− 1, x− 1) and from (d, x− 1). In the first
two of these we add the occlusion cost, and in the third we add
the corresponding dissimilarity value. The lowest of these three
costs is picked and saved as the cost to reach the current point.
The coordinates of the chosen point, from which the path came,
is also save for the purpose of backtracking.

The total cost of a path can now be defined as

C =

W−1∑
x=0

D(Lyx, Ry(x−d)|match)

+

W−1∑
x=0

(β|Locc) +

W−1∑
x=0

(β|Rocc), (8)

where β is the occlusion cost. The first summation accounts for
all the matches, the second for all the left-occlusions and the
third summation accounts for all the right-occlusions.

Figure 7: The possible moves that a path through the DSI can
make. White indicates possible origins and gray possible desti-
nations from the black block.

3.3. Hierarchical DP

Hierarchical DP, as proposed in [2], operates on very much the
same principles as standard DP. However, instead of working on
the originals, the images are first down-sampled several times.
Down-sampling a 2D image is achieved by subdividing the im-
age into groups of 4 pixels, and calculating the average of each.
In the hierarchical approach standard DP is performed on the
lowest sample level and those results are then used as an off-
set for the next minimum cost calculation, one sample level
higher. This procedure is continued until the highest level, in
other words the original image, is reached. The process yields
a considerable improvement on the amount of computation re-
quired. It is no longer necessary to consider all possible dispar-
ity levels, except at the very lowest level. A small illustrative
example follows.

If we consider the example scanlines from Figure 6,

L = [3, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 5, 5, 3, 3, 3]

R = [3, 3, 5, 5, 5, 8, 8, 8, 8, 5, 5, 5, 3, 3, 3, 3]

and down-sample them to

L′ = [3, 4, 5, 6.5, 8, 6.5, 4, 3]

R′ = [3, 5, 6.5, 8, 6.5, 5, 3, 3],

we find the array of disparities for these scanlines is

D′ = [0,#, 1, 1, 1, 1, 0, 0].

Undefined disparities, indicated by # above, are given values
by linear interpolation. We up-sample D′ by multiplying by 2
and doubling the width, obtaining

Doffset = [0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0].

These disparities can now be used as offsets in the original sam-
ple level. In order to find the new disparities we need only
search in a small interval around each offset disparity. In this
case we see that Doffset is never more than one unit away from
the correct disparities,

D = [0, 0, 0.5, 1, 1, 1, 1.5, 2, 2, 2, 2, 1, 1, 0, 0, 0].

Notable criticism against the DP algorithm is that, although
individual scanlines are matched well, there is no intra-scanline
consistency. This comes as a result of scanlines in the refe-
rence image being matched independently of one another. The
output typically contains severe disparity jumps in the vertical
direction of the image, giving it a “streaky” appearance. The
hierarchical approach does slightly better, due to the inherent
image smoothing resulting from down-sampling. However, as
soon as a scanline inconsistency is made on one level in the
hierarchy, that error is propagated all the way to the top level.
In the next section we discuss our addition to the algorithm that
attempts to address this problem.

4. Improvements and post-processing
In this section we discuss how we use the LULU filter, pioneer-
ed by Rohwer [5], to improve upon the results obtained by the
hierarchical DP algorithm discussed in the previous section. It
should be mentioned that the LULU filter is not being applied
only after the final disparity level has been calculated. Strictly
speaking it is therefore not being used as a post-process, but
since it is being applied after every level of disparity calculation
is a post-processing operation of sorts. After the discussion of
LULU we also discuss a possible sub-pixel refinement that can
be performed on the final disparities.



4.1. LULU filter

Since in the DP algorithm disparities are calculated for each
scanline independently, nothing is done to insure scanline con-
sistency (or smoothness across scanlines). There might be rad-
ical differences among adjacent scanlines if, for example, the
DP algorithm chose significantly different routes through tex-
tureless regions in the image where accurate disparities are hard
to determine. In order to filter out these abrupt changes we ap-
ply the LULU filter.

The one-dimensional LULU filter applies a number of
lower (L) and upper (U ) sub-operators sequentially to a signal
xi as follows:

L(xi) = max{min{xi−1, xi},min{xi, xi+1}} (9)
U(xi) = min{max{xi−1, xi},max{xi, xi+1}}. (10)

The L-operator removes positive outliers and then the U -
operator removes negative outliers. In our case we want to use
the LULU filter to enforce scanline consistency, so it is applied
vertically across the scanlines. If a value is changed by any of
the operators we check the preceding and succeeding disparities
to ensure that the ordering constraint is not violated.

As mentioned before, an error or missed disparity in a low
sample level can propagate through to the highest sample level
and cause gross errors in the final result. For this reason we
apply the LULU filter at every sample level, before it is up-
sampled, in an attempt to catch errors before they start propa-
gating. Because this is a relatively cheap filter is has very little
impact on the overall speed, while significantly improving the
quality of the results. Some examples are given in section 5.

4.2. Sub-pixel refinement

In the discussion up to this point calculated disparities are ob-
tained up to pixel resolution. The obtained 3D model will
therefore, because of this discrete resolution, appear planarized.
To smoothen it we need to find disparities to sub-pixel accu-
racy. Speed is still of great importance, hence we need a quick
method of interpolation.

For each pixel Lyx in the reference image we determine
the dissimilarity between it and the three pixels Ry(x−1−d),
Ry(x−d) and R(y(x+1−d)) where d is the disparity produced
by the stereo algorithm. A quadratic polynomial is then fitted to
these three dissimilarity values and its minimum, which may lie
slightly to the left or right of x, is determined and taken as the
new (continuous) disparity associated with pixel Lyx. Figure
8 gives an illustration. We refer to this procedure as sub-pixel
refinement.

Figure 8: Sub-pixel refinement by determining the minimum of
an interpolating quadratic polynomial.

5. Experimental results
For our experiments we used two Point Grey FireFly MV
monochrome cameras each with a resolution of 512 × 384,
synchronized through general IO pins at 15 frames per sec-
ond. The software was executed on a standard desktop PC
(Intel Core2 Duo 2.4 Ghz). Code was written in C++ using
the Code::Blocks development environment, compiled with the
GNU GCC compiler. OpenCV (open-source computer vision
libraries) was used for calibration and rectification. The main
program was split into several threads to make use of the mul-
tiple cores. The three most important threads are: the one
that handles image acquisition, the one that calculates dispar-
ity maps (the most important) and the one that communicated
with the graphics pipeline using OpenGL for model rendering.
Test were performed indoors in an office environment where the
lights could cause flickering if the shutter speed of the cameras
were not long enough and textureless areas, such as the walls,
could present potential problem areas for any stereo algorithm.

Figure 9 shows a typical image in (a) captured by the left
camera. We used this image as the reference. The result of ap-
plying hierarchical DP without LULU filtering is shown in (b).
Notice the gross error across the top of the head and the streak-
iness towards the sides caused by scanline inconsistencies. In-
troducing the LULU filter to the process yields the significantly
improved result in (c). The image in (d) shows the lowest sam-
pling level where the error originated. This error was success-
fully removed by the LULU filter in that sampling level, as can
be seen in (e).

(a)

(b) (c)

(d) (e)

Figure 9: (a) Example reference image. (b) Result of hierar-
chical DP without LULU filtering. (c) Result with LULU. (d)
Lower sampling level without LULU. (e) Same level as (d) with
LULU.



Figure 10 illustrates the impressive effect that the sub-pixel
refinement procedure has. A reference image is shown in (a)
and the disparity map without refinement in (b) and with re-
finement in (c). Without refinement the 3D model shown in (d)
suffers from large discontinuities between different disparities,
and results in a planarized appearance. As shown in (e) impor-
tant features such as the nose, mouth and chin become much
more distinct in the presence of sub-pixel refinement.

(a)

(b) (c)

(d)

(e)

Figure 10: Effects of sub-pixel refinement on the 3D model.

The table below lists some execution times and potential
frame rates achievable by our implementation. Initial SL refers
to the processing of the lowest sampling level (the original im-
age down-sampled three times) in the hierarchical DP (HDP),
and SPR refers to sub-pixel refinement.

description time (ms) FPS
initial SL 9.49 105
initial SL with LULU 9.50 105
HDP 39.5 25
HDP with LULU 40.5 24
HDP with LULU and SPR 62.5 16

A final attribute of the HDP worth mentioning is that its ex-
ecution time is not affected by the range of possible disparities,
unlike standard DP. The result in Figure 10 contains large jumps
in depth (between the background to the subject’s face) requir-
ing a large range of disparities to be calculated. The HDP man-
aged successfully where standard DP would need vast amounts
of processing.

6. Conclusions
In this paper we considered the correspondence problem for
stereo-vision systems, with specific focus on obtaining dense
reconstructions in real-time. We succeeded in this goal and im-
plemented a system that currently runs at 15 frames per second
and produces high quality results.

For the stereo algorithm a hierarchical approach to dynamic
programming was taken as it provides a good balance between
speed and accuracy. Further improvements were made by ap-
plying extremely fast LULU filters at every level in the hierar-
chy. A sub-pixel refinement technique was also discussed.

Experimental results are exceptionally satisfying. The
LULU filter is not only efficient but also highly adept at catch-
ing and removing errors that cause scanline inconsistency. The
sub-pixel refinement also yields pleasing results and removes
the planarization found in most stereo algorithms that calculate
disparities at pixel resolution.

Future work may include some post-processing on flagged
occlusion areas and the investigation of various other techniques
for “cleaning up” and possibly simplifying the 3D data. Some
surface fitting algorithms to be applied to the output 3D point
clouds is also a topic of interest.

7. References
[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms”, In-
ternational Journal of Computer Vision, 47:7–42, 2002.

[2] G. van Meerbergen, M. Vergauwen, M. Pollefeys and L.
van Gool, “A hierarchical symmetric stereo algorithm using
dynamic programming”, International Journal of Computer
Vision, 47:275–285, 2002.

[3] Z. Zhang, “A flexible new technique for camera calibra-
tion”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, 2000.

[4] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure
that is insensitive to image sampling”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(4):401–
406, 1998.

[5] C. H. Rohwer, “Variation reduction and LULU-smooth-
ing”, Quaestiones Mathematica, 25(2):163–176, 2002.


