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Abstract

We present a general framework for a mesh optimisa-
tion algorithm designed to minimise a given cost func-
tion by performing the edge flip operation successively.
Three cost functions are defined based on surface area,
Willmore energy and a new energy that attempts to lo-
calise Willmore energy around the edges. From experi-
mental results we conjecture that an edge flip decreases
the surface area if and only if the localised Willmore
energy is decreased.

1 Introduction

Surface reconstruction is a fundamental problem in
computer graphics that has received much attention
in recent years (examples include [2, 6]). A solution
typically involves fitting a triangulated mesh to an un-
organised point set, followed by an optimisation pro-
cedure in which the initial triangulation is changed to
fit the data in some specified optimal manner (or such
that the polyhedral surface approximates the original
smooth surface optimally).

This paper deals with optimising a given input mesh.
We provide the general framework for an optimisation
algorithm. The algorithm incorporates the edge flip op-
eration due to its simplicity and the fact that it changes
a mesh on a local scale which implies low computa-
tional cost.

The basic idea behind the algorithm has been used
previously to minimise various energies defined on the
geometry of a mesh such as surface area or curvature
[1, 5].

We present three schemes that can be incorporated
in the general algorithm. The schemes are based on
surface area, Willmore energy and localised Willmore
energy that adds temporary vertices to the mesh. Ex-
perimental results indicate a strong relationship be-
tween this localised Willmore energy and the minimi-
sation of surface area.

2 Our optimisation algorithm

Consider a triangular mesh M on a fixed set of points
in R3. We denote by V , E and F respectively the set
of vertices, edges and faces of M .

Our optimisation algoritm incorporates the edge flip
operation illustrated in Figure 1. For some edge e =
(vi, vj) with adjacent faces vivkv` and vivjv`, this oper-
ation replaces e with the edge (vk, v`) and consequently
those two faces with vivkv` and vjv`vk.
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Figure 1: The edge flip operation on an edge (vi, vj).

The basic idea behind the optimisation algorithm is
to flip edges successively in order to minimise some
predefined cost function that typically measures some
geometric property of a given mesh. For this purpose
we calculate the reduction in the cost function for every
edge e, i.e. the difference in the cost function before and
after e is flipped. These reduction values, which we
denote by f(e) for each edge e, are used to determine
the order in which edges are flipped.

A schematic overview of the general framework of
our optimisation algorithm is given in Figure 2. We
will denote by M (0) the initial input mesh and by M (r)

the mesh resulting from flipping the first r edges in the
algorithm.

In the first step we initialise r to 0 and calculate f(e)
for every edge e in M (0). These values will depend on
the chosen cost function.

In step 2 an edge e∗ is chosen such that f(e∗) is max-
imum over all edges in M (r). Flipping this edge would
result in a maximum reduction of the cost function.
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Figure 2: An overview of our general mesh optimisation algorithm on an initial mesh M (0).

If f(e∗) ≤ 0 then flipping e∗ would not decrease the
cost function. Since f(e∗) is maximum there are no
edges that would result in a decreasing, and the algo-
rithm stops.

If f(e∗) < 0, however, then the cost function de-
creases when e∗ is flipped. We flip e∗ and increase r by
1. We also update the reduction values of all edges af-
fected by this edge flip. Since a single flip changes the
mesh on a local scale it is usually necessary to update
these values for only a few edges.

After successfully flipping an edge the algorithm
jumps back to step 2 and repeats the process until no
more edge flips can decrease the cost function (or, to
avoid a possible infinite loop, until r reaches some user-
specified value rmax). The algorithm then outputs the
current mesh M (r).

Note that it is quite possible that this could yield
a mesh where the cost function is merely at a local
minimum. Our experiments however do suggest that
these local minima are fairly “good”. Escaping local
minima is currently under investigation.

During the optimisation process we require that the
topological type of the mesh remain unchanged. To
maintain this requirement we force the algorithm to
disregard some edges. In particular an edge may
not be flipped if its flipped counterpart is already an
edge in the mesh (see for example Figure 1 — if the
edge (vk, v`) exist then the edge (vi, vj) should not
be flipped). The edge flip operation is not defined
for boundary edges and these should also remain un-
changed. For the algorithm to ignore these particular
edges we set the appropriate reduction values to −∞,
so that these edges would never be chosen as candidates
for flipping.

The next section deals with defining cost functions
that the algorithm can attempt to minimise.

3 Cost functions

The general framework of the algorithm described in
the previous section has been used to minimise various

different types of cost functions, such as area [8] and
discrete analogues of known curvatures such as mean
and total absolute curvature [1, 5].

In the following subsections a few different cost func-
tions are defined. We will focus mainly on minimising
Willmore energy [9] described in sections 3.2 and 3.3,
and then compare results with the minimisation of sur-
face area described next.

3.1 Area

This section describes how a reduction value function
based on surface area may be defined.

Clearly, the total surface area A of a triangular mesh
is given by the sum of areas of all triangular faces.

In order to minimise A with the algorithm described
in section 2 it is necessary to define reduction values,
which is denoted here by fa(e) for each edge e, that
measures the difference in total area before and after
a specific edge is flipped. Note from Figure 1 that an
edge flip changes only the two faces vivkvj and vivjv`

into vivkv` and vjv`vk. Hence

fa(e) = aikj + aij` − aik` − aj`k, (1)

where aijk gives the area of the triangle with vertices
vi, vj and vk. If fa(e) < 0 for an edge e then flipping
e would reduce the total surface area.

In step 3a of our optimisation algorithm (see Fig-
ure 2) we update the reduction values of all edges af-
fected by the edge flip, that is, all edges e for which
fa(e) changes as a result of flipping e∗. Assuming
e∗ = (vi, vj) and using the vertex labelling depicted
in Figure 3, the reduction values of the following five
edges should be updated as:

fa(eij) ← −fa(eij),
fa(eik) ← aitk + aik` − ait` − ak`t,

fa(ei`) ← aik` + ai`u − aiku − a`uk,

fa(ejk) ← aj`k + ajkv − aj`v − akv`,

fa(ej`) ← ajw` + aj`k − ajwk − a`kw,
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where eij denotes the edge (vi, vj). The reduction val-
ues of the rest of the edges in the mesh remain un-
changed.
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Figure 3: The neighbourhood of an edge (vi, vj) show-
ing for which edges the area reduction values are af-
fected by a flip.

Section 4 gives examples of applying the optimisa-
tion algorithm with this area criterion on a few models.
Results are shown that suggest that minimising area
may be closely related to minimising Willmore energy,
the cost function described next.

3.2 Willmore energy

The next cost function to be minimised by our algo-
rithm is the Willmore energy of a surface, which is a
conformally invariant function of mean and Gaussian
curvature.

Recently Bobenko [3], and in a later paper Bobenko
and Schröder [4], introduced a discrete analogue of this
energy and argued why surfaces with minimal Will-
more energy are of importance. The discrete analogue
is defined at each vertex v as

W (v) =
∑

β(e)− 2π, (2)

where the sum is taken over all incident edges of v. For
each edge e the angle β(e) is calculated as follows: let
vi and vj denote the endpoints of e, and vk and v` the
other two vertices of the adjacent faces, as shown in
Figure 4. The value of β(e) is then defined to be the
external angle of intersection between the circumcircles
of the two triangles vjvivk and vivjv`.

The total discrete Willmore energy of the mesh is
then given by W =

∑
v∈V W (v).

Bobenko also derives some properties of this energy,
such as W (v) ≥ 0 and W (v) = 0 if and only if v is
convex and v and all its neighbours lie on a common
sphere (possibly with infinite radius, i.e. a plane). It is
therefore expected that a surface with minimum Will-
more energy would be smooth and visually pleasing.

In order to use our algorithm to minimise this dis-
crete analogue of Willmore energy we need to find the
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Figure 4: The angle β(e) of an edge e = (vi, vj) used
in Bobenko’s discrete analogue of Willmore energy.

corresponding reduction values, which we denote by
fw(e), for every edge e.

Consider the four vertices vi, vj , vk and v` as shown
in Figure 4 and let βijk` denote the angle β(e) for the
edge e = (vi, vj) with adjacent vertices vk and v`. Then
the following two identities hold:

βijk` = βk`ij and βijk` = βjik`. (3)

Refering to the labelling in Figure 3 and by using
the identities (3), we have the following expression for
fw(e), where e is the edge (vi, vj):

1
2fw(e) = βiktj + βi`ju + βjkiv + βj`wi

−βikt` − βi`ku − βjk`v − βj`wk. (4)

Again, the reduction values of certain edges should be
updated after an edge flip. Since the reduction value
of the edge (vi, vj) is dependent on the 8 vertices vi,
vj , vk, v`, vt, vu, vv and vw, the reduction values of the
following 13 edges should be updated: (vi, vj), (vi, vk),
(vi, v`), (vj , vk), (vj , v`), (vi, vu), (vu, v`), (v`, vw),
(vw, vj), (vj , vv), (vv, vk), (vk, vt) and (vt, vi). Some
of these edges may of course be the same depending on
the mesh. The reduction values of all the other edges
are unaffected by the flip.

Section 4 shows some results of applying our algo-
rithm with this Willmore energy criterion on a few test
models.

3.3 Localised Willmore energy

The next and final cost function defined in this pa-
per is a modification of the Willmore energy criterion
discussed in the previous section. This criterion was
originally developed in an attempt to localise Willmore
energy to a single edge. As illustrated in section 4 this
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localisation could quite possibly provide a link between
the two criteria discussed above in sections 3.1 and 3.2.

Consider an edge e = (vi, vj) with adjacent faces
vivkvj and vivjv`. In the definition of our localised
Willmore energy we temporarily add a vertex vm to the
mesh by positioning it at 1

2 (vi + vj), i.e. the center of
edge e, and connect it to vi, vj , vk and v` as illustrated
in Figure 5. We also add a temporary point vn to the
mesh after the flipping of e, positioned at 1

2 (vk + v`),
i.e. the center of the flipped edge, and connect it as
shown.

The Willmore energy of vm is then compared to the
Willmore energy of vn to determine the reduction value
of e, which we denote by fl(e). Heuristically, the idea
is that this would reflect what happens to the actual
Willmore energy on a more local scale.
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Figure 5: How the localised Willmore energy is de-
fined for an edge e = (vi, vj). Vertices vm and vn are
temporarily added to the meshes before and after e is
flipped.

Using the labelling from Figure 5 the reduction value
for the edge e is expressed as

fl(e) = βmi`k + βmjk` + βmkij + βm`ji

−βni`k − βnjk` − βnkij − βn`ji, (5)

with vm the temporary vertex in the center of edge
(vi, vj) (before flipping) and vn the temporary vertex
in the center of edge (vk, v`) (after flipping).

Again, since these reduction values depend on the 8
vertices vi, vj , vk, v`, vt, vu, vv and vw, the same 13
edges need to be updated as those from the Willmore
energy criterion in section 3.2.

We now have three different criteria (area, Willmore
energy and localised Willmore energy) for the mesh
optimisation algorithm outlined in section 2. In the
following section some experimental results and a com-
parative discussion of these criteria are given.

4 Results and discussion

The algorithm described in section 2 was implemented
with the different cost functions from section 3 and
applied to a number of test models.

The first model is a triangulation fitted to points
sampled from the surface of a torus. Figure 6 shows
the initial mesh on the top left. For every criteria (area,
Willmore energy and localised Willmore energy) we ob-
tain the exact same mesh with our optimisation algo-
rithm, shown on the top right. The figure also shows
Gaussian curvature plots of these meshes subdivided by
Loop’s scheme [7]. An improvement in visual smooth-
ness is evident.

Figure 6: Example 1 (torus): initial mesh top left
and optimised mesh top right. The bottom row shows
Gaussian curvature plots of these two meshes subdi-
vided with Loop’s scheme. There is an obvious im-
provement in visual smoothness.

The next test model was obtained from a facial cap-
turing system. Results are given in Figure 7. The intial
mesh is shown followed by the three results obtained
from minimising area, Willmore energy and localised
Willmore energy. Below each mesh is a Gouraud
shaded close-up of the top parts. The figure also shows
plots of r vs area and r vs Willmore energy, indicating
the change in area and Willmore energy as the algo-
rithm with the different criteria proceed.

The initial mesh contains many “vertical” edges
which are parameterisation artifacts. This explains the
many vertical creases visible in the shaded version of
the initial surface. Our optimisation algorithm min-
imising either area or localised Willmore energy seems
to smooth out these creases which is desirable. When
minimising Willmore energy most of these creases dis-
appear although some are still visible.

The area and Willmore energy plots display some in-
teresting behaviour. It seems that when the localised
Willmore energy is minimised then surface area is also
minimised. Also, when area or localised Willmore en-
ergy is minimised the Willmore energy seems to be
minimised. In this case the algorithm actually reaches
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a better local minimum in the Willmore energy by min-
imising either area of localised Willmore energy.

The third test model is a simplified version of the
Stanford bunny. Figure 8 shows the initial mesh and
the meshes obtained by minimising area, Willmore en-
ergy and localised Willmore energy. Plots of r vs area
and r vs Willmore energy are also shown.

This example illustrates a problem that might typi-
cally arise when minimising area (or localised Willmore
energy apparently). Narrow tube-like areas of the mesh
such as the ears of the bunny suffer quite visibly from
a reduction in volume. This is usually an undesired
effect.

Once again a strong relationship between minimising
area and minimising localised Willmore energy is evi-
dent from the plots in Figure 8. Also, even though min-
imising these two functions may at some stages cause
the Willmore energy to increase slightly, the overall
effect seems to be minimising.

All of the examples above suggest some relation-
ship between minimising area and minimising localised
Willmore energy. Our experimental results led us to
the following conjecture (a proof for or against is yet
to be found):

Conjecture : For any edge e of a mesh we have
fa(e) ≤ 0 if and only if fl(e) ≤ 0, with fa and fl

given by (1) and (5).

If the statement above is true it would explain why
the curves corresponding to minimising localised Will-
more energy in the area plots of Figures 7 and 8 are
both monotonically decreasing.

Also, if we can determine exactly why it seems that
the localised Willmore energy scheme also minimises
the actual Willmore energy (as is suggested in the Will-
more energy plots of Figures 7 and 8) then our conjec-
ture may lead to a concrete relationship between the
minimisation of Willmore energy and the minimisation
of area.

5 Conclusion

We presented a general framework for a mesh optimisa-
tion algorithm. This algorithm is designed to minimise
a given cost function by successively flipping edges of
some initial input mesh. The algorithm may termi-
nate in a local minimum of the cost function, and tech-
niques of escaping such situations are topics for future
research.

We also defined three different cost functions that
the algorithm can attempt to minimise based on area,

Willmore energy and a localised Willmore energy
scheme. The last of these introduces temporary ver-
tices corresponding to each edge in the mesh.

Results from applying our algorithm on a few test
models suggest evidence of a strong relationship be-
tween the minimisation of area and the minimisation
of localised Willmore energy. We conjecture that an
edge flip decreases the total surface area if and only if
the localised Willmore energy decreases. If proven true
this may lead to a relationship between the Willmore
energy of a surface and its area.
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flow. Eurographics symposium on geometry pro-
cessing, 101–110, 2005.

[5] N. Dyn, K. Hormann, S.J. Kim and D. Levin.
Optimizing 3D triangulations using discrete cur-
vature anlysis. Mathematical methods for curves
and surfaces, Oslo, 135–146, 2000.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-
ald and W. Stuetzle. Surface reconstruction from
unorganized points. ACM SIGGRAPH ’92, 71–78,
1992.

[7] C. Loop. Smooth subdivision surfaces based on tri-
angles. Master’s Thesis, Utah University, USA,
1987.

[8] J. O’Rurke. Triangulation of minimal area as 3D
object models. Proceedings of the international
joint conference on AI 81, Vancouver, 664–666,
1981.

[9] T.J. Willmore. Riemannian geometry. Clarendon
Press, Oxford, 1993.

5



initial mesh area Willmore energy localised WE

0 200 400 600 800 1000 1200
3.255

3.26

3.265

3.27

3.275

3.28

3.285
x 10

4

r

ar
ea

minimise area

minimise localised Willmore energy

minimise Willmore energy

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

3500

4000

r

W
ill

m
or

e 
en

er
gy

minimise Willmore energy

minimise localised Willmore energy

minimise area

Figure 7: Example 2 (face): The initial mesh and meshes resulting from minimising area, Willmore energy and
localised Willmore energy are shown on the top row. The second row depicts the top parts of the same meshes
with gouraud shading giving an indication of how smooth each is. On the bottom row plots of r vs area and r
vs Willmore energy are shown for each of the three criteria.
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Figure 8: Example 3 (bunny): The initial mesh and meshes resulting from minimising area, Willmore energy
and localised Willmore energy are shown on the top row. On the bottom row plots of r vs area and r vs
Willmore energy are shown for each of the three criteria.
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