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Abstract— We consider the problem of performing simulta-
neous localisation and mapping (SLAM) with a stereo vision
sensor, where image features are matched and triangulated
for use as 3D landmarks. We explain how we obtain 3D
landmark measurements and derive a Gaussian noise model
for these measurements. We then argue that the classic way
of removing outliers from stereo image features, by estimating
fundamental matrices, has limitations. We propose instead the
use of a probabilistic measure in determining consensus sets
of hypotheses generated in a RANSAC framework. In order to
test the performance of this approach we incorporate it into
an EKF SLAM system, which is notorious for its sensitivity to
landmark mismatches. We measure the accuracy achieved on
outdoor datasets, using DGPS as ground truth, and compare
it to two other standard SLAM algorithms. We find that the
proposed system outperforms the others significantly.

I. INTRODUCTION

Many mobile robotic systems rely on accurate simultane-
ous localisation and mapping (SLAM). It is a technique used
by a robot to build a map of some unknown environment
while simultaneously tracking its own motion in this map.
In developing such a technique one faces a chicken-and-
egg situation because an accurate map is necessary for
localisation, and accurate localisation is necessary to build
a map. The inter-dependency between the estimates of the
robot location and the map of the environment makes SLAM
an interesting and challenging research problem.

Although SLAM is considered to be solved at a theoretical
and conceptual level [1][2], practical implementation high-
lighted some issues that still need to be resolved, the most
prominent of these being sensor related. Many SLAM sys-
tems build a probabilistic map by filling it with landmarks as
they are observed by the robot’s sensors. A measurement of
visible landmarks relative to the robot is made at a particular
time step. The task of SLAM is then to optimally combine
this measurement with the current control inputs, thereby
updating the robot’s state and the locations of landmarks. If
landmarks cannot be accurately identified and tracked over
time, practical SLAM will be impossible.

In recent years vision systems have increased in popularity
as a sensor for mobile robotics. Cameras are not only
generally much less expensive than alternative sensors such
as laser range finders and radar systems, but they also contain
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more information per sample. However, reliable extraction of
useful information from images can be difficult.

The use of two synchronised calibrated cameras presents
the possibility to extract 3D information from images cap-
tured at every time step. Feature detectors such as SIFT [3] or
SURF [4] are commonly used to extract points of interests or
features from images. These algorithms are designed to iden-
tify and track features over multiple images. When matched
between stereo images, these features can be converted to
3D coordinates. This enables us to track features as 3D
landmarks for SLAM using well-known methods.

Although much work has been done to increase the
accuracy of feature matching, mismatches (outliers) may still
occur on a regular basis. One such mismatch can create
severe errors in the state estimates of a SLAM algorithm.
In order to identify outliers, random sample consensus
(RANSAC) [5] with the fundamental matrix [6] is commonly
used. This approach does, however, have some disadvantages
concerning execution time and robustness.

Several researchers have considered outlier removal in vi-
sion based SLAM. Vedaldi et al. [7] and Civera et al. [8], for
example, both use the measurement update step of an EKF
in a RANSAC framework to find outliers in a measurement.
A limitation of these methods is that they require the EKF
for state estimation, and therefore cannot be used with any
other system (such as FastSLAM or GraphSLAM).

In this paper we present a new method of removing
outliers that uses probabilistic estimates for the 3D locations
of features. Our method is similar to one by Dubbelman et
al. [9] but, where they use either RANSAC or expectation
maximisation with the Bhattacharyya distance, we use a
measurement noise model of triangulated image features to
derive a new consensus measure for RANSAC. We fit the
RANSAC model to the 3D location estimates of feature
matches, rather than their image coordinates, and argue that
this model is better suited for SLAM which uses the same 3D
location estimates. Our approach has an additional advantage
over the classic fundamental matrix based one in that far
fewer iterations are needed.

In order to evaluate our method we incorporate it into an
adaptation of the EKF SLAM algorithm, which is notoriously
prone to erratic behaviour in the presence of mismatched
landmarks. We compare results with FastSLAM, which typ-
ically performs better in the presence of mismatched land-
marks, using location data from a differential GPS (DGPS)
as ground truth. Note that although we test our method with
EKF SLAM, it can be used in conjunction with any other
SLAM algorithm.



II. IMAGE FEATURES AND STEREO GEOMETRY

We start by briefly discussing how we find features in
images, triangulate these features for use as 3D landmarks
and approximate the noise associated with each measurement
of a landmark. This characterisation is similar to our previous
work [10].

A. Feature detection and matching

Although there are many algorithms available for iden-
tifying and matching features in images we believe the
performance of our method to be largely independent of the
feature detector used, due to the improved outlier removal
scheme. In our implementations, we opted for speeded-up
robust features (SURF) [4] because of the good compro-
mise between execution time and accuracy. This algorithm
performs the task of finding salient points in an image and
calculating a descriptor for each that is invariant under scale,
rotation and moderate affine transformation. Once we have
identified points in two images, a nearest neighbour search
can be performed on the descriptors to find matches.

For every new synchronised stereo image pair, captured at
a particular time step, we follow this detection and matching
procedure to obtain a measurement of the features as a set
of pairs of image coordinates. We model each pair as a
measurement with Gaussian noise:
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where (xL, yL) and (xR, yR) are the image coordinates of
the feature in the left and right images. By N (0, Nt) we
mean a sample drawn from the normal distribution with
mean 0 and covariance matrix Nt (the same notation is used
throughout the rest of this section). We choose to describe
the noise covariance in Equation 1 by
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with σxL
, σyL

, σxR
and σyR

the standard deviations in
pixels of the match measurement. We can then match the
descriptors of a new measurement with the descriptors of
features already found at previous time steps, to arrive at
putative correspondences.

B. Stereo geometry of calibrated images

Now that we have stereo image features that can be tracked
over time, we convert them into 3D landmarks.

Standard off-line calibration can be performed on the
stereo camera pair. We rectify each incoming stereo image
pair by projecting the epipoles to infinity so that every
correspondence in these two images will have the same
vertical coordinates [6]. Some matching errors can also be
removed by enforcing this epipolar constraint.

Figure 1(a) depicts the geometry of a pair of stereo
cameras with camera centres at CL and CR, where the image
planes have been rectified, and a landmark

[
Xr Yr Zr

]T

Xr

Yr Zr
(xL, yL)

(xR, yR)CL

CR
xw

yw

xr

yr

Xr

Yr

θt

?

(xt, yt)

(a) camera geometry (b) robot geometry

Fig. 1. The geometry of our system.

observed at image coordinates (xL, yL) in the left image and
(xR, yR) in the right image.

With the geometry of the stereo camera pair, the landmark
location in metres can be calculated in robot coordinates asXr

Yr
Zr

 =
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where B is the baseline (distance between CL and CR), f
the focal length and px and py the x- and y-offset of the
principal point, all obtained from the calibration process. Qt

is the covariance matrix of the measurement.
Note that we differentiate between robot coordinates (sub-

script r) and world coordinates (subscript w) as indicated in
Figure 1(b), and xt, yt and θt are the robot’s position and
orientation in world coordinates at time t.

We know that a transformation from Nt to Qt is possible
if we have a linear system and, since Equation 3 is not
linear, we use a first order Taylor approximation to find the
transformation matrix
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It then follows that Qt can be approximated as

Qt = WtNtW
T
t . (5)

This approximation is performed to maintain a Gaussian
noise model, which is necessary for the SLAM algorithms
and our method of identifying incorrect matches.

In order to see the effect of the linearisation and evaluate
the accuracy of our assumptions, we measured the noise on
typical landmarks. Figure 2 depicts, for two of the several
landmarks tested, 500 measurements in robot coordinates
with a confidence ellipse obtained from a Gaussian fit. We
compared the measured noise in the landmarks with the noise
model in Equation 5, and found them to be consistently
similar. These tests enabled us to calibrate the values of σxL

,
σyL

, σxR
and σyR

and confirm that our approximations are
valid.
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Fig. 2. Comparing noise of measured landmarks (cyan dots with fitted
confidence ellipses in blue) and calculated covariance (red confidence
ellipses).

III. OUTLIER REMOVAL

Matching feature descriptors can be sufficient for finding
putative landmark correspondences. However, there will usu-
ally be some mismatches that can adversely affect the accu-
racy of a SLAM system. RANSAC is a popular technique for
identifying and removing such errors. In this section we give
an overview of the algorithm and explain how it is commonly
used with the fundamental matrix. We then propose a new
way of using it that is more suited for SLAM.

A. RANSAC

RANSAC [5] is a technique for estimating model pa-
rameters from data potentially containing outliers. Its basic
structure can be expressed as two steps repeated k times:

1) draw a random sample from the data and fit model
parameters to the sample;

2) find a consensus set from the data that correspond to
the proposed model within a set threshold.

Upon completion, inliers are identified as the largest con-
sensus set found. The model parameters can be re-estimated
using the entire set of inliers.

The number of iterations, k, is commonly calculated as

k =
log(1− p)

log(1− wn)
, (6)

with p the probability that the algorithm will produce a good
result, w the probability of choosing an inlier when a single
point is drawn from the data and n the size of the sample.

If the data can be arranged from best to worst in terms of
the inlier likelihood, the RANSAC algorithm can find an op-
timal consensus set within fewer iterations. This extension is
referred to as progressive sample consensus (PROSAC) [11].
In our case the data would be sorted by the error between
descriptors from the matching process. The sample used to
obtain the model parameters for RANSAC is drawn from a
growing subset of the data, the subset being the best matched
features. This increases the likelihood of selecting better
feature matches for estimating the model parameters at every
iteration. PROSAC performs at least as good as RANSAC
but, as shown by Chum and Matas [11], usually requires far
fewer iterations to find an optimal solution.

A standard approach to RANSAC with image features is to
use the fundamental matrix as a model [12]. The fundamental
matrix is a 3 × 3 matrix that encapsulates the epipolar
geometry between two camera views [6]. The Sampson
distance can be used to determine consensus of data points to
the proposed model. This approach can be highly effective in
some cases, but it is not ideal for SLAM applications. Its first
limitation is the use of image coordinates and not 3D world
coordinates as those found in a typical SLAM map. Secondly,
at least 7 correspondences are needed in order to calculate a
fundamental matrix and, from Equation 6, this could mean
that a large number of iterations would be required. The third
limitation is the possibility that mismatches can be classified
as inliers. If mismatched features are by chance close to
corresponding epipolar lines, they will agree with the model
and will not be identified as outliers.

We choose to rather work with the 3D coordinates of the
measurement, in an effort to overcome these limitations. For
every new measurement, there exists a 3D translation vector
and rotation matrix that relates the measured landmarks
to corresponding landmarks in the map already built from
previous measurements. This rigid transformation can be
calculated easily, using the least squares method proposed
by Umeyama [13], and used as a RANSAC model. Only
three 3D point correspondences are needed and this reduced
sample size results in a smaller value for k and therefore a
faster execution time.

A naive way to establish consensus of a 3D point cor-
respondence to the proposed model would be to calculate
the Euclidean distance between the two points after one has
been translated and rotated with the model parameters. This
approach, however, produces very poor results due to the
nature of the measurement noise. We found the likelihood
that two measurements are of the same point, explained next,
to be a far better measure of consensus.

B. Improved consensus measure

Consider measurement y1 with covariance C1 of the point
r1 measured at time tn, and y2 with covariance C2 of
the point r2 measured at tn+1. We wish to calculate the
probability that the two points are in fact the same point that
has been measured twice (at different time steps), i.e. we
want

Pc , P [r1 = r2 | y1, y2]. (7)

We first define a volume V = {x ∈ R3 : ||x||2 ≤ b},
where b is a constant, and consider the set

A = {(r1, r2) ∈ V × V : r1 = r2}. (8)

Here V ×V indicates the Cartesian cross product. If r1 = r2,
then r1 and r2 will be contained within a volume of zero size
and, if we let {∆V1,∆V2, . . .} be an infinite partition on V ,
we have

A = lim
a→0

( ∞⋃
i=1

{(r1, r2) ∈ ∆Vi ×∆Vi : ‖∆Vi‖ ≤ a}

)
.

(9)



It follows that Pc = P [A | y1, y2] and, since the volumes
∆V1,∆V2, . . . do not overlap,

Pc =

∞∑
i=1

lim
‖∆Vi‖→0

P [r1 ∈ ∆Vi ∩ r2 ∈ ∆Vi | y1, y2] (10)

=
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∫
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∫
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p(r1, r2 | y1, y2) dr1 dr2, (11)

where p indicates the probability density function. We ma-
nipulate the above using Bayes’ rule so that

Pc =
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∫
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∫
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p(y1, y2)
dr1 dr2.

(12)
We consider the prior probability p(r1, r2) to be uniform
over V , because we do not have any prior information of
the points measured, and p(y1, y2) is a constant.

Integrating an absolutely continuous function over an
infinitesimal volume is equal to the product of the integrand
and the size of the volume, therefore

Pc = K1

∞∑
i=1

lim
‖∆Vi‖→0

‖∆Vi‖
∫

∆Vi

p(y1, y2 | r1, r2) dr2, (13)

where r1 ∈ ∆Vi and K1 = p(r1, r2)/p(y1, y2).
In the limit, as ‖∆Vi‖ goes to zero, r1 = r2 = r and

the sizes of the volumes all become equal, say to ‖∆V ‖.
Furthermore we assume the two measurements y1 and y2 to
be statistically independent since they are made at different
time steps. If we now use a Gaussian noise model for each
measurement, as described in section II-A, we can say

Pc = K2

∫
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with K2 = (2π)−3K1‖∆V ‖.
We observe that Pc can now be written in terms of an

integral over a single Gaussian distribution, as
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and, with g = C−1(C−1
1 y1 + C−1

2 y2),

f(r) =
|C| 12
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When b→∞, i.e. when the size of V goes to infinity, the
integral part of Equation 16 evaluates to 1, yielding

P [r1 = r2 | y1, y2] ∝ |C
−1
1 |
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with z stated in Equation 17. The expression on the righthand
side of Equation 19 can now be used as a consensus measure
with RANSAC as explained in Section III-A.

Figure 3 depicts images of a typical outdoor scene cap-
tured at two consecutive time steps. SURF features are
detected and matched between the left and right images
captured at time tn. Detected features in the left image are
then matched with features in the previous left image (of
time tn−1). A similar matching is done between the two
right images. Those that are consistent in both the left and
right image pairs are kept, and shown in (a). This set is then
subjected to RANSAC with our proposed model, consensus
measure and PROSAC extension. The resulting inliers are
shown in (b).

(a) putative matches (b) inlier matches

tim
e

st
ep
t n

tim
e

st
ep
t n

−
1

Fig. 3. Left images of a typical outdoor scene taken at two time steps with
feature matches (red) before and after outlier removal. Image coordinates
of features in the left images (blue) and their matches in the right images
(green) are also shown. The disparity (yellow) between left and right image
feature coordinates is a good indication of distance from the cameras
(distance is proportional to the inverse of disparity).

IV. APPLICATION: SLAM

In order to test our approach to outlier removal, we
incorporate it into the classic EKF SLAM algorithm. A well-
known problem with EKF SLAM is its tendency to become
erratic and produce very large localisation errors if even a
single landmark mismatch occurs [10]. This problem makes
it an ideal candidate for our proposed method of removing
outliers. We also describe a FastSLAM implementation that
is used for comparison. We make some minor modifications
to the original algorithms, as described by Thrun et al. [1]
and Durrant-Whyte et al. [2], to better suit our requirements.

A. EKF SLAM

The EKF SLAM algorithm performs its task by maintain-
ing a state vector comprising the location and orientation of
the robot as well as the locations of all the measured land-
marks. A linearisation of the robot motion and measurement
equations enables us to use the Kalman filter equations to
update the estimates at every time step.



Speed of execution depends mostly on the size of the
map (number of landmarks) being maintained. The use of
image features as landmarks can be a heavy computational
burden, considering the fact that a single measurement can
quite easily contain hundreds of features. For this reason
we choose to maintain features in the map only temporarily,
while they are observed. This eliminates the possibility of
loop-closure, a trade-off that may or may not be acceptable
depending on the application. Only those features that are
seen in the current time step are maintained in the state
vector, while all others (i.e. those that were previously, but
not currently, observed) are discarded.

Our implementation of the EKF SLAM algorithm per-
forms the following at each time step:

1) extract features from stereo images;
2) match features to previous measurement using feature

descriptors;
3) flag all new landmarks, i.e. those not yet in the state

vector, to be included at the next time step if they are
observed again;

4) remove outlier matches with our robust RANSAC
based scheme;

5) include landmarks in the state vector that were flagged
at the previous time step and that match with land-
marks in the current measurement;

6) perform an EKF control update with the robot’s motion
model;

7) perform an EKF measurement update with the ob-
served landmark matches from the current measure-
ment.

Steps 3 and 5 indicate that we add features only if we can
confirm that they have been observed more than once. This
ensures that no unnecessary landmarks are included in the
map, and greatly decreases execution time.

B. FastSLAM

The FastSLAM algorithm, that we use for comparison, is
based on the Rao-Blackwellised particle filter [14]. Some of
the states are estimated using particles and some using EKFs.
In this case the robot’s states are estimated with particles
and for every particle a map is maintained using an EKF for
every landmark. This may seem computationally expensive,
but since each EKF estimates only one landmark the matrices
used in the update equations are small and computations are
executed quickly.

An important feature of FastSLAM is that landmarks
not observed at the current time step are not used in the
update. This means that the map being maintained can
grow very large without influencing execution time much,
and is limited only by the memory of the computer used.
Moreover, FastSLAM typically remains stable when mis-
matched landmarks are present. These two reasons make
FastSLAM an ideal algorithm for use with image features
as landmarks, and a good comparison to evaluate our EKF
SLAM implementation.

V. EXPERIMENTAL RESULTS

In order to evaluate and compare results of the different
SLAM systems we captured some outdoor datasets with two
Point Grey Firefly MV cameras mounted on a Mobile Robots
Pioneer 3-AT platform. The cameras were synchronised to
capture images at 4 Hz and the robot was controlled by
human input. Ground truth data was recorded with a DGPS
(accurate to about 5cm) mounted on the robot. Note that this
ground truth data is not used in any of our SLAM systems,
but employed merely for comparing results and measuring
accuracy afterwards.

We followed an approach similar to those in [8] and [9]
to quantify the robot location error in the output of an
EKF SLAM system with our proposed method of removing
outliers. Table I lists for each of two separate experiments
the total length of the particular trajectory, the mean and
maximum error over the experiment, and the relative error
with respect to the trajectory.

TABLE I
ERROR IN POSITION ESTIMATES, MEASURED OVER TWO EXPERIMENTS.

trajectory mean maximum % mean error over
length (m) error (m) error (m) the trajectory

45 0.23 0.51 0.51

71 0.23 0.50 0.33

We also compared results obtained with the following
systems, all implemented in MATLAB:

• naive localisation using only robot control inputs;
• EKF SLAM where outliers are removed with a RAN-

SAC based estimation of the fundamental matrix;
• EKF SLAM where outliers are removed with our pro-

posed probabilistic approach;
• FastSLAM with no outlier removal after initial matching

(but enforcing e.g. epipolar constraints).

Figure 4 depicts the route, viewed from above, given as
output by each of these four systems along with the DGPS
data for the 71 m dataset. For this experiment the robot was
controlled to drive forward, do a slow turn, drive straight,
make a three point turn (which includes some reversing) and
drive back. A subset of the features used by the EKF SLAM
system with probabilistic outlier removal is visible as dots
in the figure.

Figure 5 depicts the Euclidean error (in metres) in every
estimated route, as measured over time against the ground
truth. The FastSLAM system made a small orientation error
during the first turn, which resulted in some drift, but fared
quite well for the rest of the run. Thresholds in the funda-
mental matrix EKF SLAM system had to be set very strict
to reduce the risk of outliers being misclassified as inliers.
However, since this resulted in a reduced set of inliers used
at every step, drift accumulated throughout the sequence.
Our proposed method of removing outliers outperformed this
classic method, and quite significantly so.
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VI. CONCLUSIONS

In this paper we considered the SLAM problem and
specifically the problem of performing SLAM with a stereo
camera pair as the only sensor.

We characterised this sensor by deriving a Gaussian noise
model for the 3D locations of triangulated image features.
We then argued that the classic way of removing outliers
from stereo features, by estimating a fundamental matrix in
2D image space, is not particularly well suited for SLAM.
Instead, our approach estimates a model of the robot’s
motion and removes outliers by taking uncertainties in the 3D
locations of features into account and solving that problem
in a probabilistic framework.

Because of its sensitivity to outliers, EKF SLAM was
picked as a platform for our outlier removal scheme. We
compared it to the classic fundamental matrix EKF SLAM
as well as to a FastSLAM implementation, and measured
localisation errors against DGPS data. The proposed system
shows significant improvement in accuracy over the others.

The EKF approach to SLAM is attractive because of its
speed and simplicity and, with our way of removing outliers,
it now appears to be a robust and practically viable option.

We currently use the probability in Equation 19 as a
consensus measure in RANSAC, after a hypothesis has been

created as a least-squares fit over the sample, and future work
may include rather generating this hypothesis by maximising
its probability.
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