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Abstract—We consider the dense mapping problem where a
mobile robot must combine range measurements into a consistent
world-centric map. If the range sensor is mounted on the robot,
as is usually the case, some form of SLAM must be implemented
in order to estimate the robot’s pose (position and orientation)
at every time step. Such estimates are typically characterized
by uncertainty, and for safe navigation it can be important for
the map to reflect the extent of those uncertainties. We present a
simple and computationally tractable means of incorporating the
pose distribution returned by SLAM directly into an occupancy
grid map. We also indicate how our mechanism for handling
pose uncertainty fits naturally into an existing adaptive grid
mapping algorithm, which is more memory efficient, and offer
some improvements to that algorithm. We demonstrate the
effectiveness and benefits of our approach using simulated as
well as real-world data.

I. INTRODUCTION

Dense and consistent mapping of a mobile robot’s environ-
ment is vital for collision-free path planning and safe naviga-
tion. Measurements obtained from a range sensor mounted
on the robot provide information on the structure of the
visible environment, but are relative to the robot’s unknown
pose (location and orientation). In order to combine these
range measurements into a world-centric map, some form of
simultaneous localization and mapping (SLAM) that estimates
the robot’s pose at every time step is necessary. However, since
landmark measurements and robot motion are inherently noisy,
the pose estimates are typically characterized by uncertainty.
When building a map it is essential to deal with the uncertain-
ties in pose estimates and range measurements in a principled
manner to avoid overconfidence in the map.

Occupancy grids are well-suited for the task of maintaining
uncertainty in the map – as new measurements become avail-
able over time – and this makes them enormously popular [1].
However, occupancy grids are usually employed to solve the
‘mapping with known poses’ problem where an exact pose
is available at every time step. In practice, where a SLAM
system provides the pose distribution, the standard approach
for the dense mapping stage seems to be to take the most
likely pose from that distribution [2] and discard any further
information on the uncertainty in such an estimate. We address
this issue and propose a computationally tractable means of
incorporating pose uncertainty into occupancy grid maps.

Efforts have been made to improve pose estimation prior to
mapping, by decreasing the associated uncertainty [3]. How-
ever, the problem of directly incorporating pose uncertainty
into the occupancy grid mapping process has received little
attention. A notable exception is the work of O’Callaghan
et al. [4], [5]. Gaussian processes are used to incorporate
the effects of pose uncertainty, leading to a continuous func-
tional representation of map properties (such as occupancy)
from which a grid map can be extracted. Our work differs
from theirs in the sense that we retain the simplicity of the
traditional occupancy grid paradigm and alter only the way
in which cell occupancy probabilities are updated. Merali
and Barfoot [6] also deal with uncertainty in occupancy grid
maps, by relaxing the assumptions of independence between
grid cells and independence between measurements taken over
time, but they do not specifically focus on the issue of pose
uncertainty.

For the purposes of this paper we shall assume that a
SLAM system is in place and outputs at every time step a
distribution describing the robot’s estimated pose. In Section II
we outline the SLAM problem and mention two commonly
used solutions. These illustrate two fundamental ways of
describing pose uncertainty: with parameters of a closed-form
probability density function or with a set of weighted particles.

The idea then is to combine dense range measurements
taken over time into a consistent map. An estimate of the
robot’s pose is available, so those measurements can be
transformed to global map coordinates. An occupancy grid
is used to represent the map, and a brief description of the
traditional algorithm is given in Section III. We consider a way
of modelling range measurement uncertainty in Section IV and
address the issue of pose uncertainty in Section V, where the
occupancy grid update equation is altered to include weighted
samples from the pose distribution.

An issue in occupancy grids that is becoming increasingly
relevant, particularly with the development of more affordable
real-time 3D scanning technologies and the need for larger
maps, is that of high memory usage. In Section VI we
consider the adaptive grid mapping method of Einhorn et
al. [7], which selects and updates local resolution based on
the measurements, and argue how it integrates easily with our
handling of pose uncertainty.



We test our methods, both in simulation and with real data,
and report on results in Section VII. We find that our inclusion
of pose uncertainty does not reduce accuracy, compared to
output from the traditional algorithm, but rather increases
information in the map.

II. POSE UNCERTAINTY FROM SLAM
Online SLAM uses control inputs and sensor readings to

estimate at every time step t the joint posterior probability
of the robot’s pose xt and a map m. The map constructed
by SLAM is typically sparse, in the form of position coor-
dinates of salient landmarks, and not particularly suitable for
path planning or obstacle avoidance. Dense mapping can be
performed with measurements from additional sensors such
as laser range finders or stereo cameras. These sensors are
usually mounted on the robot and, in order to combine such
measurements coherently into a world-centric map, the dense
mapping process must rely on the localization output from
some type of SLAM system.

In our mapping algorithm we incorporate the pose estimates
from SLAM and, importantly, also consider the issue of
uncertainty in these estimates. We proceed by first providing
a brief description of two fundamentally different forms in
which SLAM may return this information. Thrun et al. [2] and
Durrant-Whyte and Bailey [8] give more in-depth descriptions
of the SLAM problem in general, and the two systems
mentioned here.

A. Pose uncertainty from EKF-SLAM
It is quite common to assume that the noise in both

landmark measurements and robot motion is Gaussian, in order
to employ the extended Kalman filter (EKF) for estimating
robot pose and landmark locations. A mean state vector and
associated covariance matrix are updated at every time step
and together define the joint posterior over the robot’s pose
variables (position and orientation) and landmark positions. In
order to extract the pose estimate from this joint distribution
one simply marginalizes out the landmark variables. The
resulting distribution remains Gaussian [9].

We note that this is an example of the case where the pose
uncertainty is represented as parameters of a known closed-
form distribution.

B. Pose uncertainty from FastSLAM
In order to circumvent the sometimes restrictive assumption

of Gaussian noise, the FastSLAM algorithm of Montemerlo
et al. [10] utilizes a Rao-Blackwellized particle filter for
its estimation. In this formulation the robot pose variables
are represented by particles, and therefore need not assume
any particular distribution, while landmarks are estimated by
separate low-dimensional EKFs. At every time step the set
of particles (either before or after the customary resampling
step in the particle filter), along with their importance weights,
serve as an approximation to the pose distribution.

Such a set of weighted particles that approximates a dis-
tribution is the second fundamental form in which the pose
uncertainty can be represented.

III. TRADITIONAL OCCUPANCY GRID MAPPING

The occupancy grid mapping algorithm, first introduced by
Moravec and Elfes [11], discretizes the area to be mapped
into a regular grid of cells (squares in 2D or cubes in 3D).
Ultimately, every cell must be labelled as either free or
occupied. However, since measurements of the environment
can be noisy and the exact pose of the robot on which the
sensor is mounted can be uncertain, a hard labelling is risky.
Instead it seems more appropriate to maintain probabilities of
cells being occupied, and herein lies the power of occupancy
grids.

If mi is the event that cell i is occupied, the aim is to
determine the joint posterior probability p(m1:N |z1:t, x1:t).
Here m1:N denotes the intersection of m1,m2, . . . ,mN , with
N the number of cells, and z1:t and x1:t are all the range
measurements and robot poses up to time t. Computing this
joint probability is intractable, and a standard remedy is to
assume conditional independence between cells [2] so that

p(m1:N |z1:t, x1:t) =
N∏
i=1

p(mi|z1:t, x1:t). (1)

Once the measurements relative to the robot have been trans-
formed to global map coordinates we can omit the pose itself
from the estimation. Furthermore, by applying Bayes’ rule and
assuming conditional independence between measurements at
different times, we have

p(mi|z1:t) =
p(mi|zt) p(zt) p(mi|z1:t−1)

p(mi) p(zt|z1:t−1)
, (2)

and, in terms of log odds ratios,

log
p(mi|z1:t)
p(mc

i |z1:t)

= log
p(mi|zt)
p(mc

i |zt)
+ log

p(mi|z1:t−1)

p(mc
i |z1:t−1)

− log
p(mi)

p(mc
i )
, (3)

where mc
i denotes the complement of mi. This expression

is the standard occupancy grid update equation. The log odds
ratio of a particular cell at time t is found simply by adding the
log odds ratio arising from the new measurement zt to the log
odds ratio obtained at the previous time step and subtracting
a prior. This prior log odds ratio is set to 0, i.e. p(mi) =

1
2 ,

if no prior information about the environment is available.
The first two terms on the right-hand side of (3) require

probabilities of the form p(mi|z). This is called the inverse
sensor model, and we provide details of ours in the next
section.

IV. MEASUREMENT UNCERTAINTY

The occupancy grid algorithm assigns and maintains a
probability for every cell, based on measurements captured
at discrete time steps. A range measurement consists of one
or multiple rays emanating from the sensor, each associated
with a distance to the first observed obstacle along that ray. All
cells intersected by a ray must be updated according to some
function of that measured distance, and the rules specifying
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Fig. 1. The ideal sensor model (top left) is convolved with a Gaussian noise
model, with σ = 0.3, to produce our Gaussian inverse sensor model (right).
This model corresponds to a range measurement of z = 2.

these updates are known as sensor models. For the derivation
of our inverse sensor model we focus on sensors with fairly
narrow beams, so that the uncertainty in angle is negligible
compared to the uncertainty in range.

If the sensor returns perfect noise-free measurements we can
employ an ideal sensor model such as the one shown in Fig. 1
(top left). This example corresponds to a range measurement
of z = 2. Cells closer than 2 units from the sensor are updated
with a probability value of 0 (corresponding to free), cells that
are around 2 units far with a value of 1 (occupied), and those
further than 2 units away are updated with a probability value
of 1

2 which corresponds to ‘unknown’. The width of the peak (`
in Fig. 1) indicates the range of cell distances that are deemed
occupied by the current measurement and can be set to the
diagonal of a grid cell.

If we want to assume that the measurement is corrupted
by additive Gaussian noise, say centred around the recorded
distance, we need to convolve the ideal sensor model with a
Gaussian function. If z is the measured distance and the noise
variance is σ2 (which can be a function of z), our Gaussian
inverse sensor model is given explicitly as

g(r) =


0, r ∈ (−∞, z − `

2 ),

− 1
2A+ 1

2B, r ∈ [z − `
2 , z +

`
2 ),

− 1
4A+ 1

2B −
1
4C, r ∈ [z + `

2 ,∞),

(4)

where A = erf
(
−z/(

√
2σ)
)
, B = erf

(
(r − 2z + `

2 )/(
√
2σ)
)

and C = erf
(
(r − 2z − `

2 )/(
√
2σ)
)
. The function g is ob-

tained by convolving the ideal sensor model and a zero-mean
Gaussian with variance σ2. As mentioned, the variance of the
Gaussian noise model can depend on the measured distance,
and this dependence in turn is dictated by the type of sensor
used. The uncertainty in range measurements returned by a
stereo camera sensor, for example, grows quadratically with
distance and σ is often chosen as z2/(bf) where b is the
baseline and f the focal length [12].

The rest of the discussion is not dependent on a specific
choice of inverse sensor model. In our experiments, however,
we employ the Gaussian model in (4).

V. POSE UNCERTAINTY

Occupancy grid mapping typically functions under the as-
sumption that the pose of the robot is known exactly, at every
time step, so that measurements relative to the sensor are easily
transformed to global coordinates before being incorporated
into the map. The problem with this assumption is that, if the
robot’s pose has large uncertainty, the resulting map will not
reflect it.

We deal with this problem by sampling from the pose
distribution (returned by the SLAM system), transforming
the measurement to map coordinates using every sample
individually and, finally, updating the map by summing over
the samples.

A. Sampling from the pose distribution

We consider two basic forms in which a typical SLAM
system might return the pose distribution, namely closed-form
(such as the multivariate Gaussian returned by EKF-SLAM)
and a sample-based approximation (such as the weighted
particles returned by FastSLAM).

If the pose distribution is known in closed form we can sam-
ple directly from it using the inverse transform method [13].
In some cases, particularly when the distribution is Gaussian,
the number of samples can be calculated from a required level
of representativeness [14]. If the pose distribution is already
approximated by a set of weighted samples, as is the case
when a particle filter is employed for SLAM, there is no need
for further sampling and we can proceed.

B. Integrating the samples

Let us now assume that the pose distribution at time t is
described by a set of samples

xt =
{
x
[1]
t , x

[2]
t , . . . , x

[M ]
t

}
(5)

and corresponding weights (summing to 1)

wt =
{
w

[1]
t , w

[2]
t , . . . , w

[M ]
t

}
. (6)

Using each pose sample we transform the measurement at time
t to global coordinates, to obtain a set of M measurements

zt =
{
z
[1]
t , z

[2]
t , . . . , z

[M ]
t

}
. (7)

The log odds ratio with which to update cell i is now
approximated using the set of transformed measurements zt
and weights wt. If y is a random variable defined as

y = log
p(mi|zt)
p(mc

i |zt)
, (8)

its expected value can be estimated as

E[y] =
∫
p(y)y dy ≈

M∑
j=1

w
[j]
t log

p(mi|z[j]t )

p(mc
i |z

[j]
t )

. (9)

This Monte Carlo approximation replaces the first term on the
right-hand side of (3). We note that it will converge to the true
expected value as M → ∞ (according to the strong law of
large numbers).



Fig. 2. An example to illustrate the effect of incorporating pose uncertainty:
a simulated 2D environment and field of view (left); the occupancy grid
resulting from using the exact pose and an ideal sensor model (middle); and
the occupancy grid after the incorporation of uncertainty in robot position and
orientation (right).

We update a particular cell’s value by computing a log
odds ratio for every sample using the inverse sensor model,
multiplying that ratio by the sample weight, taking the sum
over all samples, and then adding the result to the cell’s
currently stored value (and subtracting the prior, if applicable).

We illustrate the effect of this strategy by means of a
simulated example in Fig. 2. The robot is placed in a simple 2D
environment and a range measurement is captured. Uncertainty
in pose is modelled with a 3-dimensional Gaussian distribution
(for position and orientation), with a randomly generated co-
variance matrix. Samples are drawn from this distribution and
a map is constructed. In order to depict occupancy probabilities
we use grey levels ranging from white (free space) to black
(occupied space).

VI. ADAPTIVE OCCUPANCY GRID MAPPING

An important consideration in the design of an occupancy
grid is that of cell size. The map must be able to represent
a certain level of detail, necessitating a fine resolution, but
memory and computational limitations often hamper such a
requirement. The use of an adaptive grid, that changes its
resolution locally based on the measurements received, can
be hugely effective at alleviating this conflict. In this section
we explain how our mechanism for handling pose uncertainty
is extended to adaptive grids.

An adaptive grid map consists of an array of squares or
cubes with different side lengths. A standard way of repre-
senting such maps is by means of region trees — quadtrees
for 2D maps and octrees for 3D maps. By allowing nodes
on different levels of the tree to be active, a map of varying
resolution is obtained.

The tree is typically initialized at some level. As mea-
surements are received over time, cells are checked and, if
deemed necessary, recursively split for higher resolution in
a local region or merged for lower resolution. We focus
on the splitting and merging rules of Einhorn et al. [7], as
our incorporation of pose uncertainty fits naturally into their
method, and offer some improvements.

A. Splitting a cell

A cell should be split if its current resolution is inadequate
to model the environment as observed by the sensor. That is,
we need to split a cell if it receives conflicting information

regarding its occupancy. Einhorn et al. [7] keep track of
the number of hits (measurement rays indicating an obstacle
within the cell boundaries) and misses (rays that pass through
the cell before hitting an obstacle). The distribution of hits and
misses is compared to an expected distribution, that accounts
for sensor noise, by means of a χ2-test. If the test fails, the cell
is believed to be partially occupied and subjected to a split.
The process is continued recursively until no more splits are
performed or until a predefined finest resolution is reached.
Once a cell is split, the newly created children inherit their
parent’s occupancy probability from the previous time step.

We note that this test alone may give rise to errors in
the map. Consider the example in Fig. 3. The dashed lines
in (a) represent a grid cell for which only misses are recorded
(those rays that hit an obstacle before reaching the cell are
ignored) so that the cell is believed to be entirely free of
obstacles (b). However, this current measurement indicates that
only part of the cell is free and the rest unknown, as shown
in (c), necessitating a split. It is therefore clear that rays hitting
obstacles before reaching the cell in question must be taken
into consideration.

We adapt the algorithm of Einhorn et al. by counting not
only hits and misses but also unknowns (rays that hit obstacles
before reaching a particular cell). The distribution of these
three observables is then compared to expected distributions,
using a χ2-test with one extra degree of freedom, and if any
significant deviation is found the cell is split. Both the hit and
miss counts are carried over to the next time step, while the
number of unknowns is discarded as it need not influence a
cell that becomes visible in a later view.

This technique for increasing local resolution is easily
extended to incorporate our handling of pose uncertainty. As
explained in Section V, we have at every time step a set of
measurements with accompanying weights. For every cell we
count hits, misses and unknowns for every individual measure-
ment in this set, multiply those counts by the corresponding
sample weight and sum over the samples.

A

B

gr
id

ce
ll

→

→

(a) ray A passes through a grid cell,
while B stops before reaching it

(b) cell is believed to be entirely
free and should not be split

(c) cell is in fact measured as par-
tially free and must be split

Fig. 3. In adaptive occupancy grids we count hits and misses for every cell.
This example shows that these counts alone can lead to errors. No hits are
recorded for the grid cell in (a), and it is therefore believed to be entirely
unoccupied (b). However, by taking into consideration those rays that hit
obstacles before reaching the cell, we realize that the measurement indicates
the state to be only partially unoccupied, and otherwise unknown, so the cell
must be split (c).



B. Merging cells

Once all necessary splits have been done and every active
node’s probability value has been updated, we check to see if
any cells can be merged (or pruned from the tree). Following
the work of Einhorn et al. [7], children with a common parent
are merged if they satisfy any of the following criteria:

• the standard deviation of their probability values is less
than some predefined threshold and their mean is within
a threshold distance of 0 (certainly free) or 1 (certainly
occupied);

• all probability values are greater than a predefined value;
• all probability values are less than a predefined value.
Merging is performed recursively as long as the criteria are

met. After a merge, the newly activated cell must receive a
probability value. For this we assign the mean of the merged
cells’ log odds ratios. In doing so little information is lost
since we merge siblings only when they have similar values
or are almost certainly occupied or free.

VII. EXPERIMENTAL RESULTS

In this section we present some results using simulated as
well as real-world data. Since our mapping algorithm requires
a pose distribution at every time step, we must have a SLAM
system running in the background. It is important to note that
we cannot measure the performance of the occupancy grid
mapping algorithm and that of the SLAM system separately,
as both influence the map. However, for the purposes of our
experiments, we shall assume that the SLAM system does
model the pose distributions realistically.

A. Simulated data

We make use of the simulation environment of Brink et
al. [15] that was developed originally as a testing platform
for FastSLAM with stereo vision. A 2D environment consist-
ing of straight-edge obstacles is created and landmarks are
defined. A simulated robot moves through this environment
by following set waypoints and gathers measurements (stereo
image coordinates) of the landmarks. Noise is added to these
measurements and also to the control commands. At every
time step the SLAM system takes these inputs and generates
a pose distribution. Furthermore, we equip the robot with a
simulated laser scanner that captures range measurements for
our occupancy grid mapping.

Every cell in an obtained occupancy grid can be classified
as either occupied or free, by imposing some threshold, for
comparison to the true environment. We can then measure false
positive and true positive rates, and by varying the threshold
we generate a receiver operating characteristic (ROC) curve.

In Fig. 4 (a) we compare the ROC curve obtained from
our inclusion of pose uncertainty (‘with pose unc.’) to the
ROC curve of a map generated from only the most likely
pose at every time step (‘w/o pose unc.’). The performance
of our algorithm is comparable to traditional occupancy grid
mapping, which implies that by incorporating pose uncertainty
to the map little (if any) accuracy is lost while information
regarding that uncertainty is gained.
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Fig. 4. ROC curves depicting (a) the performance of traditional occupancy
grid mapping and our inclusion of pose uncertainty, measured against the true
map; and (b) the performance of adaptive mapping with and without counting
unknowns, measured against a fine regular grid.

Next we consider the performance of our adaptation to
the adaptive occupancy grid mapping algorithm of Einhorn et
al. [7]. The aim of an adaptive grid is to replicate its regular
(fine resolution) counterpart, using fewer cells. We therefore
measure false positives and true positives against a regular grid
map, rather than the true environment, and obtain the ROC
curves shown in Fig. 4 (b). We see that our adaptation (‘with
unknowns’) does indeed outperform the existing algorithm
(‘w/o unknowns’), as expected.

B. Real-world data

In order to test our method on real-world data we make use
of the Bicocca indoor set from the Rawseeds Project [16].
A wheeled robot equipped with various sensors is driven
through fairly narrow corridors with office doors on their sides.
Recorded odometry data and tracked stereo image features
provide input for our FastSLAM system, which we base on
an implementation by Brink et al. [15], that generates pose
distributions. Note that, in the absence of loop closure and
since no absolute location information is retrievable from
tracked stereo image features, the uncertainty in pose is
expected to increase over time. At every time step we take
the estimated pose distribution, which is given as a set of
particles and associated importance weights, and range data
from the robot’s forward facing laser scanner to construct a
2D occupancy grid map.

In Fig. 5 we compare results from the traditional occupancy
grid algorithm, that simply takes a maximum likelihood sam-
ple from the pose distribution as input, with our algorithm that
incorporates information from all the particles at every time
step (in these depictions the robot moves upwards). We show
close-ups of the maps to better demonstrate the behaviour
of the two algorithms. Our incorporation of pose uncertainty
leads to a map with an overall smoother appearance and, more
importantly, it seems that the effects of inaccurately estimated
poses are lessened.

The result in Fig. 5 (a) illuminates a problem often en-
countered when a maximum likelihood pose is drawn from
a set of particles, for use in mapping. As the importance
weights of particles are updated over time, based on the



(a) without pose uncertainty (b) with pose uncertainty

Fig. 5. Close-ups of occupancy grids generated by (a) the traditional algorithm
and (b) our algorithm that incorporates pose uncertainty. The pose distribution
at every time step, in the form of particles estimated by FastSLAM, is shown
as a collection of blue dots. The circled areas emphasize how the incorporation
of pose uncertainty can mitigate inaccuracies in the map.

observations, the index associated with maximum weight may
jump around and cause a track of the most likely particles
to appear erratic. While a weighted average of the particles at
every time step might produce a smoother track, and therefore
seem more appropriate, its likelihood can be low (given the
pose distribution).

VIII. CONCLUSION

We considered the problem of dense mapping with range
measurements captured over time by a mobile robot. We
presented a means of incorporating the uncertainty associated
with the robot’s pose, as estimated by a SLAM system, into
occupancy grid maps. Our solution requires samples from the
pose distribution. If a particle filter is used for estimation,
as is the case in FastSLAM, this distribution is already ap-
proximated by samples. Alternatively, if the pose distribution
is given in closed-form as is the case when EKF-SLAM
is employed, we generate samples from it. The occupancy
grid update equation is then altered to include these samples
through Monte Carlo integration.

We also showed how the efficient adaptive grid mapping
algorithm of Einhorn et al. [7] extends easily to include
our handling of pose uncertainty. We identified a potential
shortcoming in how cells are selected for splitting, to increase
resolution locally, and offered a remedy. For every cell we
count not only hits and misses but also unknowns (rays hitting
obstacles before reaching the particular cell). In doing so a cell
that is only partially observed by the current measurement can
be recognized and split if necessary.

Simulations suggest that our incorporation of pose uncer-
tainty is effective, giving a more informative map, without
leading to a loss in accuracy. Our adjustment to the adaptive

grid algorithm significantly improves the ability of the adaptive
grid to mimic its regular (fine resolution) counterpart.

For future work we hope to investigate the possibility of
incorporating a Gaussian pose distribution by blurring the
grid map with an appropriate kernel. This idea is not that
straightforward to implement in practice, however, due to
difficulties with the dimensions of the kernel that correspond
to the robot’s bearing.

We set out to validate the theoretical arguments behind our
approach, but there is still room for improving the imple-
mentation. In fact, the new update equation can lead to an
implementation structure slightly different from the traditional
occupancy grid algorithm. For every cell a single assignment
can be made from all the measurement beams that intersect the
cell across all pose samples. This structure would lend itself
to effective parallelization for real-time applications.
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