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Mesh optimisation based on Willmore energy
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Abstract

An algorithm for improving the quality of an ini-
tial triangulation on a fixed set of vertices is sug-
gested. The edge flip operation is performed consec-
utively, aiming to minimise the discrete Willmore en-
ergy over a triangulated surface (or mesh). The Will-
more energy of a surface is a function of Gaussian and
mean curvature, and measures local deviation from a
sphere. Virtual points are introduced in the triangu-
lation to overcome the local invariance of Willmore
energy under edge flips. Some experimental results
are given.

1 Introduction

Computer-based modelling and visualisation has nu-
merous applications in engineering, science and the in-
dustry. In particular, the digital capturing and recon-
struction of a physical 3D object has applications in
computer graphics and vision, computational geome-
try, reverse engineering, terrain modelling, tomogra-
phy and medical imaging.

A polyhedral surface, or mesh, is a piecewise planar
surface and is commonly used in computer graphics
for approximating smooth surfaces. We will be con-
cerned with triangular meshes, hereafter referred to
as triangulations.

Given a set of vertices sampled from the surface
of some physical 3D object, surface reconstruction
is concerned with finding an “optimal” triangulation
that in some sense best approximates the original sur-
face. If the coordinates of the vertices are fixed these
triangulations are said to be data-dependent.

Some examples of methods for surface reconstruc-
tion from scattered data may be found in [3, 6, 7].
These methods aim at constructing a triangulation
that defines an underlying smooth surface (e.g. by
means of subdivision) that somehow approximates the
surface of the original 3D object in an optimal man-
ner. Most of the reconstruction methods therefore
contain an optimisation step that changes some ini-
tial triangulation on the scattered data such that the
resulting triangulation induces a smooth surface that
is optimal. This paper focusses on that step.
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The problem that is addressed may be stated as
follows: given a fixed set of points in 3D, typically ac-
quired from the surface of a physical object by means
of a 3D scanner, and some initial triangulation on
these points, improve (or optimise) the local quality
of this triangulation. This is generally referred to as
mesh optimisation.

Some mesh optimisation algorithms based on min-
imising certain geometric properties of a polyhedral
surface have been proposed. Examples include min-
imising the total area of the triangular mesh [10],
minimising discrete analogues of the integral Gaus-
sian curvature [1] and absolute mean curvature [2].
See also [5] for algorithms based on minimising these
curvatures. The question of which of these algorithms
produce the “best” result remains unanswered.

We propose an algorithm similar in structure to
those mentioned above. However, we incorporate a
geometric property known as Willmore energy. This,
to our knowledge, is a new approach to mesh optimi-
sation.

The rest of the paper is structured as follows: Sec-
tion 2 briefly outlines the theory of discrete curva-
tures, with specific focus on the Willmore energy of
a surface. Section 3 describes the mesh optimisation
algorithm. Some experimental results are given in
Section 4 and Section 5 concludes.

2 Discrete curvatures

For a smooth surface with Gaussian curvature K and
mean curvature H the following geometric properties
are of importance: the area,

∫
dA; the total Gaussian

curvature,
∫

K dA; the total mean curvature,
∫

H dA;
and the total Willmore energy,

∫
(H2 − K) dA.

Consider a simplicial triangular surface (i.e. a tri-
angulation) with vertex set V , face set F and edge set
E. Discretisations for the first three of these proper-
ties are well known for this type of surface (see for
example [1, 8]).

The discrete area is simply the sum of areas of all
the triangular faces.

The discrete analogue of the Gaussian curvature at
a vertex v ∈ V is defined as

G(v) = 2π −
∑

i

αi,

where αi denotes the angle at v of every triangle shar-
ing v. The total discrete Gaussian curvature is then
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given by G =
∑

v∈V G(v).
The discrete analogue of the mean curvature at an

edge e ∈ E is defined as

M(e) = θ|e|,

where |e| denotes the length of the edge and θ the an-
gle between the normals of the two adjacent faces.
The total mean curvature is then given by M =∑

e∈E M(e).
Bobenko [4] recently proposed a discrete analogue

of the Willmore energy for a triangulated surface. At
a vertex v it is defined as

W (v) =
∑

e3v

β(e) − 2π,

where the sum is taken over all incident edges of v.
For each edge e the angle β(e) is calculated as fol-
lows: let vi and vj denote the endpoints of e, and vk

and v` the other two vertices of the adjacent faces, as
shown in Figure 1. The value of β(e) is then defined
to be the external angle of intersection between the
circumcircles of the two triangles vjvivk and vivjv`.
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Figure 1: The angle β(e) of an edge e = (vi, vj).

The total discrete Willmore energy of the mesh is
then given by W =

∑
v∈V W (v).

Bobenko [4] derives some properties of this energy,
most notably that W (v) ≥ 0 and W (v) = 0 if and
only if v is convex and v and all its neighbours lie on
a common sphere (possibly with infinite radius, i.e. a
plane).

It is therefore expected that a surface with mini-
mum Willmore energy would be smooth and visually
pleasing. This motivates the need for developing a
mesh optimisation algorithm that aims at minimising
Willmore energy.

3 Mesh optimisation

Consider a given set of vertices V and some initial
triangulation on these points. Our mesh optimisation
algorithm attempts to minimise the discrete Willmore
energy of this surface by changing the triangulation.

Following the methodology of [2], the triangulation
is changed with the edge flip operation illustrated in
Figure 2. A cost function is defined for a specific
triangulation and edge flips that result in a decrease
in this cost function are then performed successively
until a minimum is reached.


 






 










� �
��

� �

�
�

�

Figure 2: The edge flip operation.

The algorithm assigns to each edge a value that
reflects the difference between the cost function before
and after flipping the corresponding edge. We refer to
this value as the cost reduction value.

The order in which the edges are flipped may be
chosen by an optimisation method such as simulated
annealing, but at this stage our algorithm is greedy in
nature, flipping an edge that maximally reduces the
cost function at every step. It is important to note
that this may not always lead to a global minimum in
the cost function and the algorithm may terminate at
a local minimum. Techniques to escape from such a
local minimum are currently under investigation. Pos-
sibile strategies include implementing multiple edge
flips at each step [9].

Since the aim of our algoritm is to minimise the
Willmore energy of the surface we want to define the
cost function to be the total discrete Willmore energy
of the current triangulation. However, as also men-
tioned in [4], for an edge e and its flipped version e′,
β(e) = β(e′). This may lead to the Willmore energy
being locally invariant under flips.

Attempting to overcome this we introduce “virtual”
points to the triangulation. To assign a cost reduction
value to an edge e we implement a simple subdivision
scheme by adding a vertex v in the middle of e and
connect it as shown in Figure 3. The total Willmore
energy is calculated for this new triangulation and
then compared to the total Willmore energy of the
triangulation resulting from flipping e to e′, with a
point v′ in the middle of e′. The cost reduction value
of e is then taken to be the difference between these
energies. Since in general the positions of v and v′

would differ there would also be a difference in the
Willmore energy before and after the flip.

We call the points v and v′ virtual since they only
appear in calculating the cost reduction values, not in
the resulting triangulation. We refer to the Willmore
energy of the triangulation with added points as the
virtual Willmore energy.
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Figure 3: Adding points to the triangulation.

In one of the proofs of Bobenko [4] the combina-
torics of a mesh is changed by adding points to every
edge and connecting them in a similar way as depicted
in Figure 3. This is done in order to render an ab-
stract simplicial sphere inscribable and is therefore
essentially quite different from what we are doing.

In the implementation of the algorithm there are
some types of edges that cannot be flipped without
changing the topological type of the triangulation. An
edge e with flipped version e′ should not be flipped
if e′ is already an edge of the triangulation. For such
edges we define the cost reduction function to be −∞.

Note also that β(e) is undefined for a boundary
edge e (i.e. an edge with only one adjacent face). It
is also clear that a boundary edge cannot be flipped.
Hence the cost reduction function of boundary edges
are also defined as −∞.

It is important to realise that the algorithm de-
scribed above does not necessarily minimise the total
discrete Willmore energy of the triangulated surface
since this energy might remain unchanged under edge
flips. The virtual Willmore energy (VWE) might be
a new type of energy somehow related to the Will-
more energy. It can be said that our algorithm at-
tempts to minimise the VWE over a triangulation in
the hopes of minimising the Willmore energy of the
underlying smooth surface induced by the triangula-
tion. Whether or not this would always be achieved
is still under investigation although experiments do
suggest that it would.

4 Results

This section provides some experimental results from
applying our mesh optimisation algorithm on a few
test models.

The data of the first model comprises of the 8 cor-
ners of a cube with 6 vertices added to the centres of
each face, slightly inside the cube. Figure 4 shows on
the left an initial triangulation on these vertices. The
result of applying our algorithm on this triangulation
is shown on the right of the figure.

What is interesting about this result is that the ini-
tial triangulation is a so-called tight triangulation [1],
i.e. a triangulation on the data with minimum total
absolute extrinsic curvature. Our algorithm changes
this triangulation to what appears to be a triangu-
lation with minimum total area. An algorithm that
minimises total absolute curvature [2] has the exact
opposite effect on this data. Exactly how these al-
gorithms relate to each other is a topic for further
study.

Figure 4: Test model I - a cube with 6 added vertices,
initial (left) and optimised (right).

The second test model consists of points sampled
on the surface of a torus. Figure 5 shows an initial
triangulation on the left. On the right of the figure
the result of applying our algorithm is shown.

The resulting triangulation is clearly more regular
(the triangles are more or less equal in size). The tri-
angulation is also visually smoother. This may be due
to the fact that for a region of a smooth surface that
closely resembles a sphere the corresponding Willmore
energy is close to zero. It would seem that our algo-
rithm attempts to extract regions in a triangulation
that is spherelike.

Figure 5: Test model II - points sampled on a torus,
initial (left) and optimised (right).

The data for the third test model was acquired with
a 3D scanner and consists of points on the surface
of a human face. An initial triangulation, shown on
the top left of Figure 6, was obtained by parameter-
ising the data and applying 2D Delaunay triangula-
tion. The result from our algorithm is shown on the
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top right of the figure. The figure also shows shaded
versions of the top parts of these two triangulations.

There are many “vertical” edges visible in the initial
triangulation. This is a parameterisation artifact and
results in the underlying smooth surface to have many
vertical creases (see lower left part of Figure 6). Our
algorithm does seem to smooth out these creases (a
result from flipping most of the vertical edges in the
initial triangulation), as can be seen on the lower right
of Figure 6.

Figure 6: Test model III - points sampled on a face,
initial (left) and optimised (right).

Regarding the compexity of the algorithm, consider
a triangulation with n edges. By keeping record of
adjacency in the mesh (edges to faces) a single edge
flip can be performed in O(1) time. Searching through
a priority queue for which edge to flip would require
O(log n) time. The worst case scenario, in which every
edge is flipped, would thus be O(n log n).

5 Conclusion and future work

We presented a new mesh optimisation algorithm.
The algorithm attempts to minimise the so-called vir-
tual Willmore energy of a triangulation by performing
the edge flip operation successively.

An important area for further research is to study
and develop methods for escaping from local minima
in the cost function. Implementing other optimisation
strategies such as simulated annealing, rather than
our greedy method, might prove to be useful.

Another important issue in the algorithm is that
some edge flips can result in the surface intersecting

itself. Detecting these edges and avoiding such inter-
sections is still an open problem.

Based on results obtained experimentally our algo-
rithm seems to be promising. It should be stressed
that the arguments upon which the algorithm is built
are mostly heuristic in nature and a comprehensive
analytical analysis is necessary.

Topics of current ongoing research also include de-
termining under what circumstances the choice of
where to position the virtual points on the edges af-
fects the outcome, and the relationship between this
algorithm and other algorithms such as minimising
area or mean curvature.

The discrete analogue of Willmore energy is rela-
tively new. It would be interesting to learn how dif-
ferent areas in shape modelling could benefit from this
concept.

References

[1] L. Alboul and R. van Damme. Polyhedral metrics
in surface reconstructions. In: The Mathematics of

Surfaces VI, G. Mullineux (Ed.), Clarendon Press,
Oxford, 171–200, 1996.

[2] L. Alboul, G. Kloosterman, C. Traas and R. van
Damme. Best data-dependent triangulations. Jour-

nal of computational and applied mathematics, 119:1–
12, 2000.

[3] F. Bernardini and C.L. Bajaj. Sampling and recon-
structing manifolds using alpha-shapes. Proceedings

of the 9th Canadian conference of computational ge-

ometry, 193–198, 1997.

[4] A.I. Bobenko. A conformal energy for simplicial sur-
faces. Combinatorial and computational geometry,
52:133–143, 2005.

[5] N. Dyn, K. Hormann, S.J. Kim and D. Levin. Op-
timizing 3D triangulations using discrete curvature
anlysis. Mathematical methods for curves and sur-

faces, Oslo, 135–146, 2000.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and
W. Stuetzle. Surface reconstruction from unorganized
points. ACM SIGGRAPH ’92, 71–78, 1992.

[7] K. Hormann. From scattered samples to smooth
surfaces. Proceedings of the 4th Israel-Korea bi-

national conference on geometric modeling and com-

puter graphics, 1–5, 2003.

[8] M. Meyer, M. Desbrun, P. Schröder and A.H. Barr.
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