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CONTOUR INTEGRAL SOLUTION OF ELLIPTIC PDEs IN
CYLINDRICAL DOMAINS∗
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Abstract. The solutions of certain elliptic PDEs can be expressed as contour integrals of
Dunford type. In this paper efficient contours and quadrature rules for the approximation of such
integrals are proposed. The trapezoidal and midpoint rules are used in combination with a conformal
mapping that fully exploits the analyticity of the integrand, leading to rapidly converging quadrature
formulas of double exponential type. In addition to optimizing the step size of the quadrature formula,
implementation aspects such as the solution of the resulting shifted linear systems at each quadrature
node are discussed. Numerical examples involving Laplace’s equation in a rectangle, a box, and an
annular cylinder are presented. Timing and accuracy comparisons of the various implementations
are given.
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1. Introduction. Contour integral methods, in which the operator exponential
is approximated by some quadrature scheme, have been studied extensively in the
context of time integration of parabolic partial differential equations (PDEs); see
[7, 16, 21, 27]. Elliptic PDEs posed in right cylindrical domains can be treated in an
analogous manner, as outlined in the work of Gavrilyuk and coauthors [8, 9, 10]. Here
a cylindrical domain is defined in the differential geometry sense of the word, namely,
a ruled surface spanned by a one-parameter family of parallel lines [5, section 3-5.A].
(This includes rectangular prisms and annular cylinders, two of the test examples we
shall consider below.) The space coordinate in the direction of the rulings, here called
x, plays a role similar to the time variable in the parabolic problem.

Let such a cylinder be defined by (x, y) ∈ [0, 1] × Ω, and let A be an elliptic
operator defined on the closed domain Ω ∈ R

d. Our interest here is the elliptic PDE
in Rd+1:

(1.1)
∂2u

∂x2
+Au = 0, u(0, y) = 0, u(1, y) = f(y), y ∈ Ω

(with other types of boundary conditions considered below). For computational work,
A will be a matrix, a discrete approximation to the elliptic operator.

The PDE (1.1) is solved, at least formally, by u(x, y) = E(x;A)f(y), where

(1.2) E(x; z) =
(
sin(

√
z)
)−1

sin(x
√
z), x ∈ [0, 1],

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section July 27,
2015; accepted for publication (in revised form) September 23, 2015; published electronically Novem-
ber 10, 2015.

http://www.siam.org/journals/sisc/37-6/M103276.html
†Department of Mathematical Sciences (Applied Mathematics), Stellenbosch University, Stellen-

bosch 7600, South Africa (nickhale@sun.ac.za, weideman@sun.ac.za). The first author was supported
by a Postdoctoral Fellowship from Stellenbosch University. The second author was supported by In-
centive Funding from the National Research Foundation in South Africa.

A2630

http://www.siam.org/journals/sisc/37-6/M103276.html
mailto:nickhale@sun.ac.za
mailto:weideman@sun.ac.za


CONTOUR INTEGRAL SOLUTION OF ELLIPTIC PDEs A2631

x

y
u(x, 0) = 0

u(x, 1) = 0

u
(0

,
y
)

=
0

u
(1

,
y
)

=
f
(y

)

∂2u
∂x2 + ∂2u

∂y2 = 0

Γ

Fig. 1. Left: Domain and boundary conditions for the textbook problem (1.4)–(1.5). Right:
Example contour, Γ, in the z-plane for the evaluation of the integral (1.3). The contour encloses the
eigenvalues of A (solid dots), but should keep a safe distance from the poles of E(x; z) (open dots).

a function analytic in z ∈ C \ {(kπ)2, k = 1, 2, . . .}. Evaluating this function with an
operator or matrix argument can be done by a Cauchy integral

(1.3) u(x, y) =
1

2πi

∫
Γ

E(x; z)(zI −A)−1f(y) dz,

sometimes known as the Dunford or Dunford–Taylor formula. (For the operator case,
see [6, VII.3.9] or [28, VIII.7], and for the matrix case see [13, section 1.2].) Here Γ is
any positively oriented contour in the domain of analyticity of E(x; z) that encloses
the spectrum of A. The evaluation of the integral (1.3) on a suitable contour by
an efficient quadrature rule forms the basis of the solution procedure proposed in
[8, 9, 10].

The simplest example is the case where A is the second derivative operator with
homogeneous Dirichlet boundary conditions on Ω = [0, 1], so that (1.1) becomes

(1.4)
∂2u

∂x2
+
∂2u

∂y2
= 0,

subject to

(1.5) u(x, 0) = u(x, 1) = 0, 0 < x < 1; u(0, y) = 0, u(1, y) = f(y), 0 < y < 1.

This problem, summarized in Figure 1 (left), is the textbook example of Laplace’s
equation on a square. Generalizations to higher dimensions (y → (y1, y2, . . . , yd))
and more general domains Ω are straightforward, however, as is the treatment of
nonconstant coefficients (i.e., A = A(y)) and more general boundary conditions (such
as Neumann or Robin) on the operator A.

It might be instructive to connect the integral (1.3) to better known formulas for
the solution of (1.1) by means of the following informal argument. Assume, for exam-
ple, that the operatorA is negative definite with eigenvalues λj < 0 and corresponding
eigenfunctions vj(y). Assume further the expansion

(1.6) f(y) =
∑
j

cjvj(y),

and insert this into (1.3), to obtain

(1.7) u(x, y) =
1

2πi

∑
j

cj

(∫
Γ

sin(x
√
z)

sin(
√
z)

dz

z − λj

)
vj(y).
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When the integral in parentheses is evaluated by residues (e.g., on a contour Γ as
shown in Figure 1), it follows that

(1.8) u(x, y) =
∑
j

cj
sin(x

√
λj)

sin(
√
λj)

vj(y).

For example, in the case of the problem (1.4)–(1.5) the eigenvalues are λj = −j2π2

with corresponding eigenfunctions vj(y) = sin(jπy). Making use of the identity
sin iθ = i sinh θ, one obtains the Fourier series solution to (1.4)–(1.5), namely,

(1.9) u(x, y) =
∑
j

cj
sinh(jπx)

sinh(jπ)
sin(jπy),

as derived in most textbooks by the method of separation of variables.
Rather than using residue calculus, the approach of [8, 9, 10] and the present

paper is to compute instead the integral (1.3) by numerical quadrature. This involves
choosing a suitable contour, as well as an efficient integration rule to apply on this
contour. A key factor in choosing these is the decay properties of the integrand in (1.3)
and in particular the function E(x; z) defined by (1.2). A straightforward calculation
yields

(1.10)
∣∣E(x; reiφ)

∣∣ ∼ e−(1−x)
√
r| sin 1

2φ|, r → +∞, φ �= 0,

which represents rapid decay away from the positive real axis. This rapid decay
makes the simple trapezoidal or midpoint rules natural candidates for the numerical
integration [18, 25]. A good contour would aim to maximize the decay, and therefore
favor the left half-plane over the right, but would stay away from the spectrum of A
where the resolvent norm becomes large.

After choosing the contour and quadrature rule, the approximation to (1.3) can
then be expressed as

(1.11) u(x, y) ≈
∑
k

wk(x) (zk(x)I −A)
−1
f(y).

Although the weights wk and nodes zk will continue to depend on x, for brevity we
hereafter drop the x dependence from our notation.

The advantage of (1.11) over series such as (1.8) is that no eigenvalues or eigen-
functions need to be computed, only the resolvent. When A is a matrix, this is
equivalent to solving complex shifted linear systems of the form

(1.12) (zkI −A)v = f ,

where the right-hand side is the vector representation of f(y). These systems are
independent and can therefore be solved in parallel, which is a major advantage of
this class of methods.

Another advantage is the fact that these methods lift the curse of dimensionality
by one degree. In particular, (1.1) is a PDE in R

d+1 but because A ∈ R
d the problems

(1.12) are d-dimensional. A two-dimensional (2D) PDE can therefore be reduced
to solving only a handful of one-dimensional problems, while a three-dimensional
(3D) Laplace equation leads to the solution of complex Helmholtz equations in two
dimensions, etc.

On the other hand, in practical computations where A is large, solving the
systems (1.12) may still be costly. It is therefore essential that the quadrature rule



CONTOUR INTEGRAL SOLUTION OF ELLIPTIC PDEs A2633

for computing (1.3) is optimized so that the number of resolvent solves can be kept to
a minimum. This issue has received attention in the case of parabolic PDEs [16, 27],
but in the elliptic case the only results available are presented in [8, 9, 10]. While this
collection of papers provides powerful convergence proofs in a very general setting,
implementation aspects are not emphasized. We therefore consider the present paper
a practical extension of [8, 9, 10] and summarize the connections as follows.

First, we point out that in [8, 9, 10] results were formulated in terms of sinc
quadrature rather than the trapezoidal or midpoint rules, but these rules are all
equivalent in the present situation. In [8] a parabolic contour was used, and a hyper-
bolic contour was used in [9, 10]. Here we use a hyperbolic contour as well, which
follows naturally from a conformal mapping argument. Its parameters differ from
the mapping used in [9, 10], however, in that we exploit here more of the analyticity
offered by the function (1.2).

Second, the numerical linear algebra involved in solving the discretized versions
of (1.12) received no attention in [8, 9, 10]. Here we focus on spectral collocation
for the discretization of A and show that if it has a Kronecker product formulation,
the use of specialized Sylvester or Lyapunov solvers can lead to a major speedup in
execution time.

The present paper was inspired by a problem solved in [25], namely, the last of the
10 problems in Trefethen’s hundred-dollar, hundred-digit challenge [2]. The problem
involved a particle at the center of a 10×1 rectangle that undergoes Brownian motion
until it hits one of the edges. The challenge was to compute, to 10 significant digits,
the probability that it hits one of the shorter rather than one of longer edges. One of
several solution methods outlined in [2] involves solving (1.4)–(1.5) with the domain
(x, y) rescaled to the rectangle [0, 1]× [0, 10] and f(y) = 1. By symmetry, the required
probability is then twice the solution value at the center of the rectangle. By using a
Fourier series similar to (1.8) the probability can be computed as 3.837587979×10−7.
Not all the solution methods sketched in [2] carry over from the 2D rectangle to a
3D box, but the formulation as a Laplace PDE survives and hence also the Fourier
series solution. For a box of dimension [0, 1]× [0, 1]× [0, 10] the probability drops to
7.298817657×10−10. A solution method based on (1.11) was used in [25] to solve this
“particle-in-a-box” problem. We present here an improved version of the method used
in [25], and fill in the details omitted in that paper. The solution values just cited
will serve as reference values for our numerical tests below, where we shall use the
acronyms PIAS, PIAR, and PIAB for particle-in-a-square/rectangle/box, respectively.

Although analytical solutions for all these examples are available in the form of
series, it should be stressed that the technique and parameter choices described here
are directly applicable to far more general operators A. The only restriction is that
the spectrum of A (or that of its discretization) must lie on or near the negative real
axis.

The outline of the paper is as follows. In section 2 we select a suitable contour,
Γ, and quadrature rule for the approximation of (1.3) with an asymptotically optimal
step size, h∗. In section 3 we validate this by comparing the series (1.11) resulting
from the quadrature approximation to the classical Fourier series solution (1.9) for the
problem (1.4)–(1.5). Section 4 focuses on various techniques for the efficient solution of
the resolvent systems (1.12) when the operator A is discretized by spectral collocation
in some 2D and 3D problems. In section 5 we briefly discuss some extensions to the
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Fig. 2. Left: Infinite strip of half-width π/2 about the real axis. Right: The slit-plane C \{
(−∞,−�2] ∪ [π2,∞)

}
. Horizontal lines in the w-plane (left) are mapped to the hyperbolas in the

z-plane (right) by the conformal map (2.1). In particular, the real axis is mapped to the vertical
(dashed) line with real part (π2 − �2)/2, which defines our contour of integration, Γ. (Different
contours are considered in section 5.)

method, including how to deal with the case x → 1 (where the rapid decay in (1.10)
is lost) and how to incorporate boundary conditions other than those given in (1.1).

2. Discretization of the contour integral. The numerical approximation of
the integral (1.3) consists of two steps: choose an appropriate contour, then discretize
the contour integral by a quadrature rule.

2.1. Choosing a contour. The simplest choice of contour would be Γ : z =
iθ, −∞ < θ <∞, but this fails to take into account (a) the decay and (b) the region
of analyticity of the integrand in (1.3), and hence can yield a poor rate of conver-
gence. Instead, following [11, 25], we determine the contour by means of a conformal
map from a horizontal strip in the complex plane to the domain of analyticity of
the integrand. Such a map is optimal for the trapezoidal and midpoint quadrature
rules [17].

The domain of analyticity is determined by the function E(x; z) and the resolvent
(zI − A)−1. The function E(x; z) has poles at (kπ)2, k = 1, 2, . . ., but for simplicity
we assume analyticity only in C \ [π2,∞). The resolvent is analytic at all z not in
the spectrum of A, which we assume is confined to the interval (−∞,−�2] on the
negative real axis with � ≥ 0. This assumption includes many cases of interest,
including (1.4). In section 5.4 we discuss extensions to the case where the spectrum
is located in a wedge-like region around the negative real axis. The plan is therefore
to construct a conformal map that takes a horizontal strip in the complex w-plane to
the double slit-plane C \ {(−∞,−�2] ∪ [π2,∞)

}
(see Figure 2). It is well known that

the mapping z = i sinhw maps the strip |Imw| < 1
2π conformally to the slit-plane

C \ {(−∞,−1]∪ [1,∞)
}
, and adjusting for the nonsymmetric location of the slit tips

one obtains

(2.1) z =
1

2
(π2 − �2) +

i

2
(π2 + �2) sinhw, |Imw| < 1

2
π.

Let w = θ + iα with (θ, α) ∈ (−∞,∞) × (− 1
2π,

1
2π). For fixed α, the curve

z = z(θ) is a member of the family of concentric hyperbolas with foci at z = −�2
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and z = π2. For the moment, we shall use the particular member of this family that
corresponds to α = 0 as the contour of integration in (1.3), because then the strips
of analyticity in the upper and lower halves of the w-plane have equal widths; see
Figure 2 (left). That is, the contour is defined by

(2.2) Γ : z =
1

2
(π2 − �2) +

i

2
(π2 + �2) sinh θ, −∞ < θ <∞.

Note that this is in fact a parametrization of the vertical line that passes through the
midpoint of the interval [−�2, π2]; see Figure 2 (right). As discussed in section 5.2,
accuracy can sometimes be improved by exploiting the decay in the left half-plane of
the factor E(x; z) in (1.3). In this case α > 0 is used, and the contour is a hyperbola
that begins in the third quadrant, winds around the spectrum, and terminates in the
second quadrant, much like the diagram in Figure 1 (right). The analogous situation
for parabolic PDEs was considered in [15, 16]. In both the α = 0 and α > 0 cases the
contour is closed at infinity and thus encloses the spectrum in (1.3) as required.

An alternative mapping that could be considered is the one in [11], where the
contour is determined via a conformal map not from the infinite strip to the double
slit-plane, but from a periodic strip to the region C\{[−L2,−�2]∪ [π2,∞)}. Although
there may be some small benefit from the stronger assumption that the spectrum is
contained in [−L2,−�2], the focus in [11] was on operators/matrix functions like Aα

and log(A) that do not exhibit the rapid decay of (1.10). As we shall see in the next
section, mapping from the infinite strip allows one to take advantage of this decay in
determining an optimal step size in the quadrature discretization and, as we see in
(2.2), results in a much simpler map.

2.2. Trapezoidal rule: Error estimates and step size. When the change
of variable defined by (2.2) is made in (1.3), one obtains

(2.3) u(x, y) =
1

2πi

∫ ∞

−∞
E(x; z(θ))

(
(z(θ)I −A)−1f(y)

)
z′(θ) dθ.

By inserting (2.2) into (1.10), one sees that the factor E(x; z(θ)) in the integrand
exhibits double exponential decay as θ → ±∞, x ∈ [0, 1) (cf. also (2.19) below).
This rapid decay accounts for the efficiency of the trapezoidal/midpoint rule when
applied to (2.3). In fact, one of the members in the family of double exponential
integration rules is the sinh-transformation [20, section 8.2.3], and it is noteworthy
that in the present context this rule appeared naturally from the conformal map (2.1).
For discussions of double exponential quadrature we refer to [18, 20, 25].

To complete the discretization of (2.3) by the trapezoidal (resp., midpoint) rule,
we introduce an evenly spaced grid with spacing h:

(2.4) θk = kh (resp., θk = (k + 1
2 )h), k = 0,±1,±2, . . . .

The approximation to (2.3) is then

(2.5) u(x, y) ≈ h

2πi

∞∑
k=−∞

E(x; z(θk))
(
(z(θk)I −A)−1f(y)

)
z′(θk).

When the symmetry of the integrand as well as the contour (2.2) is taken into account,
followed by a truncation to n terms, the approximation can be computed as
(2.6)

u(x, y) ≈ Im
{n−1∑′

k=0

wk(zkI −A)−1f(y)
}
, zk := z(θk), wk :=

h

π
E(x; z(θk))z

′(θk),
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1 function [z, w, h] = nodesandweights(n, x, ell2)
2 %NODESANDWEIGHTS Optimal nodes and weights for contour integral method.
3 % Inputs: n - Number of points
4 % x - Height of required slice
5 % ell2 - Largest (most positive) eigenvalue of A is at -ell2
6 % Ouputs: z - Quadrature nodes
7 % w - Quadrature weights
8 % h - Optimal step size
9 % For wapr.m see www.mathworks.com/matlabcentral/fileexchange/3644/

10 if ( nargin < 3 ), ell2 = 0; end % Default to ell2 = 0
11 h = 2/n*wapr(sqrt(2/(ell2+pi^2))*pi^2*n/(1-x)); % Optimal step size h_*: Eqn (2.21)
12 t = ((0:n-1).'+0.5)*h; % Equispaced t_k (midpoint): Eqn (2.4)
13 z = (pi^2-ell2)/2+1i*(pi^2+ell2)/2*sinh(t); % Mapped nodes z(t_k): Eqn (2.2)
14 dzdt = 1i*(pi^2+ell2)/2*cosh(t); % z'(t_k)
15 E = sin(x*sqrt(z))./sin(sqrt(z)); % E(x;z(t_k)): Eqn (1.3)
16 indx = imag(sqrt(z)) > asinh(realmax); % Deal with overflow ...
17 E(indx) = exp(1i*(1-x)*sqrt(z(indx))); % when im(z) >> 1.
18 w = (h/pi)*dzdt.*E; % Weights: Eqn (2.6)
19 end

Fig. 3. MATLAB code for computing quadrature nodes and weights with the optimal step size,
h∗, in (2.21). Lines 16–17 prevent overflow in the E function when Re(z) is large and negative.
This code, along with codes to reproduce all the results in this paper, can be found online at [12].

where the prime indicates that in the case of the trapezoidal rule (but not the midpoint
rule), the k = 0 term is halved. MATLAB code for generating the weights and nodes
of the midpoint rule version of this formula is given in Figure 3.

To determine a good choice of step size h we follow a line of analysis similar to
that presented in [14, 27]. To this end, consider the absolutely convergent integral

(2.7) I =

∫ ∞

−∞
g(θ) dθ

and its infinite and finite trapezoidal or midpoint rule approximations

(2.8) Ih = h

∞∑
k=−∞

g(θk), Ih;n = h

n−1∑
k=−n+1

g(θk)

(where the upper limit is replaced by n− 2 in the case of the midpoint rule). In the
remainder of this section we derive accurate approximations to the discretization and
truncation errors,

(2.9) D = |I − Ih|, T = |Ih − Ih;n|,
associated with the quadrature approximation to (2.3). As we shall see, the discretiza-
tion error can be made small by letting h→ 0, but that increases the truncation error
(assuming a fixed value of n). The optimal value of h follows from an asymptotic
balance of these two opposing effects.

Theorem 2.1 (see [14, 17, 25]). Let w = θ + iψ with θ and ψ real. Suppose
g(w) is analytic in the strip −c− < ψ < c+ for some c− > 0, c+ > 0, with g(w) → 0
uniformly as |w| → ∞ in that strip. Suppose further that the function g(w) satisfies

(2.10)

∫ ∞

−∞
|g(θ + ic+)| dθ ≤M+(c+),

∫ ∞

−∞
|g(θ − ic−)| dθ ≤M−(c−),

then

(2.11) |I − Ih| = D+ +D−,
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where

(2.12) D+ ≤ M+(c+)

e2πc+/h − 1
, D− ≤ M−(c−)

e−2πc−/h − 1
.

For the integral (2.3) we require

(2.13)
1

2π

∫ ∞

−∞

∣∣E(x, z±)z′±| ‖(z±I −A)−1f‖ dθ ≤M±(c±),

where

(2.14) z± = z(θ ± ic±), z′± = z′(θ ± ic±).

The conformal map (2.1) involves a strip of analyticity of half-width 1
2π in the

w-plane, and therefore it follows that c± < 1
2π with c± → 1

2π maximizing the decay
rate of the exponential factors in (2.12). At the same time, however, M+(c+) grows
unboundedly as c+ → 1

2π, where the shift z+ in the resolvent approaches the negative
real axis and hence the spectrum of A. Similarly, M−(c−) is unbounded as c− → 1

2π,
as z− then approaches the positive real axis and the poles of E(x; z). The remedy is
to take c± = 1

2π − ε± for some 0 < ε±  1 and find the values of ε+ and ε− that
minimize the right-hand side of

(2.15) D± ≤ min
0<ε±< 1

2π

M±(12π − ε±)
e2π(π/2−ε±)/h − 1

.

Rather than attempting to characterize rigorously the behavior of M±(12π − ε±)
as ε± → 0 we offer the following heuristic argument that the dependence on ε± is at
worst algebraic and can in practice be ignored. For M− the algebraic behavior is a
consequence of the fact that E(x; z) has only simple poles. ForM+ and diagonalizable
matrix A we have [24]

(2.16) ‖(z+I −A)−1‖2 ≤ κ(V )

dist(z+, σ(A))
,

where κ(V ) is the condition number of the matrix of eigenvectors of A. This shows
that the resolvent norm also behaves like a simple pole as z+ approaches the spectrum
of A . Furthermore, the numerical experiments in Figure 4 suggest that in practice
the growth is only logarithmic. In either case, choosing the values of ε± that mini-

mize (2.15) leads to D± = O(h−1e−π2/h) or D± = O(log(h−1)e−π2/h), respectively.

When h is small, the exponential factor e−π2/h dominates both h−1 and log(h−1) and
so we ignore them. Thus, we assume the two discretization errors are comparable and
combine them into one, namely,

(2.17) D = O(e−π2/h).

The exception is when � is large. Here the fast decay in E(x; z) as z approaches the
negative real axis leads toM+ = O(e−(1−x)� log(ε−1

+ )), whileM− remains O(log(ε−1
− )).

The two discretization errors can then be significantly different, which justifies shifting
the contour of integration off the real axis in the θ-plane to balance these terms. We
explore this in section 5.2.

If the series (2.5) could be summed to infinitely many terms, the convergence rate
(2.17) would be very attractive. In practice, however, the infinite series is truncated
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Fig. 4. Numerical verification of the behavior of M+(c+) (left) and M−(c−) (right) as c± → 1
2
π

for the problem (1.4)–(1.5) with f(y) = 1 and various choices of x. The left figure shows that the
growth is logarithmic in ε+ and roughly linear in x (at least, away from the limits x → 0 and x → 1).
The figure on the right, which shows curves for the same values of x, suggests that the growth is
slightly faster than logarithmic in ε− and essentially independent of x. This logarithmic growth is
negligible compared to the exponential decay in the denominators of (2.12).

as in (2.6). We estimate the truncation error as the magnitude of the first omitted
term in (2.6), which is justified by the double exponential decay of the weights wk in
the series. Hence we shall estimate the truncation error as T = O(E(x; z(θn)).

From (2.2) we deduce that if h is fixed, then

(2.18) z(θn) ∼ i

2
(π2 + �2) sinh θn ∼ i

4
(π2 + �2) eθn , n→ ∞.

Accordingly, we substitute r = 1
4 (π

2 + �2) eθn and φ = 1
2π into (1.10) and use the fact

that θn = nh (resp., θn ∼ nh) for the trapezoidal (resp., midpoint) rule. This yields
an estimate for the truncation error

(2.19) T = O(e−(1−x)
√
π2+�2 enh/2/(2

√
2)),

valid when x is bounded away from 1.
An estimate for the optimal step size h can be derived by matching the exponents

in the discretization and truncation error estimates, namely, (2.17) and (2.19). That
is,

(2.20)
π2

h
=

(1− x)

2
√
2

√
π2 + �2 ehn/2,

the solution of which can be expressed in terms of the Lambert W -function1

(2.21) h∗ =
2

n
W

( √
2 π2 n

(1− x)
√
π2 + �2

)
.

The corresponding estimate for the total error is

(2.22) T +D = O
(
e−π2/h∗), n→ ∞.

1Most computer algebra systems make provision for the computation of w = W (t), which is
defined implicitly by wew = t. For the computations here, for example, in the code in Figure 3, we
used the MATLAB function wapr available from [1].
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Using the fact that the principal branch of the Lambert function obeys W (t) ∼
log t, t→ ∞, one concludes that the optimal step size and total error satisfy, respec-
tively,

(2.23) h ∼ c1
logn

n
, T +D = O

(
e−c2n/ logn), n→ ∞,

for constants c1 and c2. The latter formula is consistent with the typical convergence
rate for double exponential quadrature [18, 25]. The estimates (2.23) agree with the
formulas of [9, 10] but are not very useful in practice. We have found that the formula
(2.21), for example, gives a much better estimate for h when n is only moderately
large. A similar observation was made in [25].

In the above analysis we assumed x ∈ [0, 1) but with x bounded away from 1, and
we have also assumed that � = O(1). We look at the modifications necessary when
x→ 1 and �� 1 in sections 5.1 and 5.2, respectively.

3. The contour integral series versus the classical series. We start with
a numerical check on the validity of the optimal step size formula (2.21). For this
purpose we consider the textbook Dirichlet problem on the square, namely, (1.4)–(1.5)
with f(y) = 1 on (0, 1). The explicit series solution, which is of the form (1.9), will
be used to compute the error.

To enable us to focus purely on the accuracy of the discretization of the contour
integral as described in section 2, we shall not use a discrete version of the operator
A = ∂2/∂2y but rather use exact formulas. This particular problem is simple enough
for the resolvent equation v(z; y) = (zI − A)−1f(y) to be solved analytically, which
in the case f(y) = 1 is

(3.1) −d
2v

dy2
+ zv = 1, v(0) = v(1) = 0,

with solution

(3.2) v(z; y) =
1

z

(
1− cosh(( 12 − y)

√
z)

cosh(12
√
z)

)
.

The series (2.6) resulting from the contour integral approximation becomes

(3.3) u(x, y) ≈ Im
{n−1∑′

k=0

wkv(zk; y)
}
.

In our first test we establish the validity of the step size formula (2.21). In this
simple problem the spectrum of A can be computed explicitly (the eigenvalues are
given below (1.8)) and hence we take � = π.

In the left panel of Figure 5, we show the numerically computed errors in (3.3) as
contour plots in the (n, h) parameter domain. In the right panel, we do the same for
the total error estimate D+T , with the discretization and truncation errors defined by
(2.17) and (2.19), respectively. In each of the two panels, we have superimposed the
theoretical estimate of the step size (2.21) as a dashed curve. The striking agreement
between the two contour plots and the fact that the dashed curve follows the minimum
error path in the (n, h) plane lends support to our error analysis. We note that in each
plot two distinct regions can be identified. Above the dashed curve the discretization
error D dominates, and below it the truncation error T dominates. The contour
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Fig. 5. Contour plots of the error in the series approximation (3.3) to the Dirichlet problem
(1.4)–(1.5) with f(y) = 1, as a function of the number of terms, n, and the step size, h. The labels
indicate the log10 value of the maximum relative error computed at (x, y) = (0.5,y), where y are
a 100 equally spaced points in (0, 1). On the left, numerically computed errors are shown. On the
right, the theoretical error as defined by the sum of the terms in (2.17) and (2.19). Experiment and
theory are shown to be in excellent agreement. The dashed curve represents the optimal step size h∗
from (2.21) as a function of n.

curves in these two regions are consistent with the theoretical error formulas (2.17)
and (2.19), respectively, namely, h = constant (horizontal lines) and hn = constant
(hyperbolas).

We have not seen the quadrature series (3.3) in the literature. It can be considered
an alternative to the classical series solution (1.9), which by contrast can be found in
almost any undergraduate textbook on engineering mathematics. It is well known that
the latter series converges slowly when x ≈ 1, and in these cases the new series can
in fact yield higher accuracy for the same number of terms. This is demonstrated in
Figure 6, where we show the absolute error (the max-norm on y ∈ (0, 1), approximated
using 100 evenly spaced values) in each of the two series as a function of the number
of terms. For small and intermediate values of x (left panel) the classic series is
more accurate, while for x close to 1 (right panel) the contour integral series is more
accurate, with the break-even point around x ≈ 0.7 (middle panel). We hasten
to add that technically the classical series will always converge faster as n → ∞,
as it converges exponentially while the contour integral series converges only sub-
exponentially (recall (2.23)). In a finite precision (i.e., finite n) computation, however,
the contour integral series can converge faster in a practical sense.

It is further possible to compare the accuracy of the classical and the contour
integral series by estimating the remainder of each when the series is truncated to
n terms. Using (1.8) and (2.21)–(2.22), one can show that the contour integral is
superior for values of x in the range (xc, 1), with xc ∼ 1− π/(2 log(2n)), n � 1. For
example, with n = 32 the value of xc is approximately 0.71, which is consistent with
the break-even case shown in the middle panel of Figure 6.

Returning to the striking correspondence between theory and computation shown
in Figure 5, it is only a single numerical experiment and one has to question how it
will hold up in other situations.

First, we have chosen only a single value of x in the center of the domain, and
measuring the error at other values of x ∈ (0, 1) will certainly change the quality of
approximation (as we saw in Figure 6, the errors increase with increasing x). However,
if one repeats Figure 5 for other values of x the degree of correspondence between
the empirical and theoretical contour plots (left and right panels) remains excellent
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Fig. 6. Convergence of the classical series (1.8) and the contour integral series (3.3) for the
problem (1.4)–(1.5) with f(y) = 1. For large x the contour integral series is better. In particular,
to reach 10 digits of accuracy when x = 0.95, fewer than 30 terms are required in (3.3), while the
series (1.8) requires over 120 terms. The limit x → 1 is discussed in further detail in section 5.1.

(figures are omitted for brevity). The exception is when x ≈ 1, because then the
double exponential decay in (2.3) breaks down as mentioned in the last paragraph of
section 2. This situation will be looked at separately in section 5.1.

Second, we have used spectral information on A to obtain a value for � in (2.21),
but what if no such information is available or is hard to come by? In the case of the
square domain [0, 1]× [0, 1] it makes no great difference, at least when A = ∂2/∂y2,
if one simply sets � = 0. In fact, by doing so one overestimates the optimal step
size only slightly, which is tantamount to erring on the safe side, as can be seen in
Figure 5.

If the spectrum of A is shifted further along the negative real axis, however,
having a good estimate for �2 can improve the accuracy by some orders of magnitude.
To demonstrate this, consider changing the square domain to the rectangle (x, y) ∈
[0, 1]×[0, b]. In the case b = 0.1 and f(y) = 1, the problem (1.4)–(1.5) is then identical
to the 10-digit problem discussed in the introduction. This modification changes the
exact value of �2 from π2 to π2/b2. We continue to use the series approximation (3.3),
with the obvious modifications to (3.2). If � is large, then further advantage can be
obtained by moving the contour of integration off the real axis in Figure 2(a). We
explore this in section 5.2.

In Figure 7 we plot error contours for the case b = 0.1. In contrast to Figure 5,
where we plotted errors as a function of (n, h), we plot errors here as a function of
(n, �2). The value of h used at any point in the (n, �2) plane is the optimal step
size formula (2.21). The dashed curve represents the theoretical value of �2, namely,
(π/b)2. Below this curve the error is just the total error, defined by (2.22). Again
there is a reasonable agreement between theory and experiment. In this part of the
error plots we can see the effect of using an inaccurate estimate of �2. Compare, for
example, the error levels along the dashed curve �2 = (π/b)2, which represent exact
spectral information, with the error level along the line �2 = 0, which would be a
reasonable estimate if no spectral information were available. In this example one
can see a reduction of about half the number of terms in the series if exact spectral
information is used.

Above the dashed curve in Figure 7 we see the effect of overestimating �2. To
understand what is happening it is informative to return to Figure 2. Suppose the
right-hand figure of Figure 2 depicts our overestimated value of �2 and that the true
smallest eigenvalue of A lies on, say, the dashed hyperbola to the left of the vertical
line at (π2 − �2)/2. The preimage of this point in the w-plane (Figure 2, (left)) under



A2642 NICHOLAS HALE AND J. A. C. WEIDEMAN

Number of terms (n (smretforebmuN) n)

Numerical error (log10 (ledomrorrE) log10)

E
ig

en
v
a
lu

e
es

ti
m

a
te

(�
2
)

E
ig

en
v
a
lu

e
es

ti
m

a
te

(�
2
)

Fig. 7. Contour plots of the error in the series approximation (3.3) to the Dirichlet problem
(1.4)–(1.5) with f(y) = 1, but defined on the rectangular domain [0, 1]× [0, 0.1] as a function of the
number of terms, n, and the approximation to the dominant eigenvalue, −�2. The labels indicate
the log10 value of the maximum relative error computed at (x, y) = (0.5,y), where y represents 100
equally spaced points in [0, 1]. The left figure shows the numerical error, whereas the right shows the
level curves of the model error D + T . Again, experiment and theory are shown to be in excellent
agreement, except for the lower right of the domain, where roundoff errors contaminate the results.

the conformal map (2.1) then lies on the first dashed line above the imaginary axis.
This reduces the width of analyticity in the strip and so, by Theorem 2.1, the rate of
convergence is reduced.

We conclude then from Figure 7 that having a good approximation to �2 can
significantly improve the convergence rate of the contour integral method and that it
is better to underestimate the value than to overestimate it.

4. Discretizing in space and numerical linear algebra. In the numerical
results presented above we used an exact eigenfunction representation of the operator
to focus specific attention on the quadrature error. In practice such a representation
is typically not available and some discrete approximation to the operator will be
required. Once the operator is discretized, the computation of the resolvent in the
sum (2.6) becomes equivalent to the solution of n shifted linear systems of the form
(1.12). The efficient solution of such systems is therefore a key factor in the success
of the contour integral method, and we discuss this here along with the question of
the discretization of A.

4.1. Example 1: Laplace equation in a square. Although one could use the
methods of finite differences or finite elements, we shall use Chebyshev spectral collo-
cation for the discretization here. That is, a problem such as (1.4)–(1.5) is discretized
by

(4.1)
∂2u

∂x2
+Au = 0, u(0) = 0, u(1) = f ,

where the y-variable has been discretized on an (m+ 1)-point Chebyshev grid of the
second kind, scaled to [0, 1]. The vectors u = u(x) and f have entries

(4.2)

uj(x) ≈ u(x, yj), f j = f(yj), where yj = sin2
( πj

2(m+ 1)

)
, j = 1, . . . ,m.

In the case of (1.4)–(1.5), A is the second derivative spectral collocation matrix of order
m×m with homogeneous Dirichlet conditions enforced by basis recombination [23, 26].
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The resolvent systems to be solved are

(4.3)
(
zkI −A

)
vk = f , k = 0, . . . , n− 1.

Although the matrices A are dense, they are typically of moderate size. For
example, to reproduce the error curves in Figure 6 differentiation matrices of sizes
32 × 32, 38 × 38, and 83 × 83 are sufficient, respectively, for values of x = 0.5, 0.7,
and 0.95. The increasing number of degrees of freedom is required to resolve the
corner singularity at (x, y) = (1,±1). One of the particular advantages of the contour
integral method is precisely the fact that accurate solutions can be obtained in the
interior of the domain (i.e., far away from the corners) without having to resolve these
kinds of singularities.

The more challenging case where A arises from discretization on a two- or higher-
dimensional domain will be discussed below, but for this one-dimensional problem
the systems (4.3) can simply be solved directly and in parallel, for example, with the
MATLAB backslash and parfor functions. When A is large, improved efficiency
can be obtained by computing an a priori Hessenberg factorization, A = PHPT , or
Schur factorization, A = USU∗. (Note that an LU factorization is not enough.) The
coefficient matrix zkI −A in (4.3) can thus be transformed into zkI −H or zkI − S,
which can then be solved efficiently, and likewise in parallel. Alternatively, one could
use the ultraspherical formulation of Chebyshev spectral methods [19], which in the
current setting effectively reduces to the factorization A = 4DS−1D2D−1, where
S = S0S1, and D2 are given in [19, section 3], and D is a diagonally scaled discrete
cosine transform. In this case the resolvents zkI − A are transformed to zkS − D2

(plus boundary conditions) which, due to the banded structure of D and S, can be
solved in linear time.

Figure 8 shows the time taken to solve (4.1) using each of these different factoriza-
tions as the matrix size, m, is increased using n = 1, 20, and 100 nodes, respectively.
The n = 1 case corresponds to a single linear solve, where it is no surprise that form-
ing a Hessenberg or Schur factorization is more expensive. When n = 20—a more
typical case—we see that although the asymptotic complexity remains the same, the
Hessenberg factorizations can significantly reduce the computation time for all m.
The Schur factorization is typically more expensive to compute than the Hessenberg
(in fact a Hessenberg reduction is usually the first step in a Schur factorization) but
the upper triangular matrix S will allow each linear solve to be performed faster. The
break-even value for these two competing factors is around n ≈ 100. For large m (in
this case around 50 or so) the ultraspherical discretization eventually wins because of
its linear complexity. However, for nonconstant coefficient problems the bandwidth
of the matrices in the ultraspherical discretization will increase, and this break-even
point will become larger.

It is worth noting that the discussion above is closely related to our choice of a
spectral discretisation. Had we chosen to use finite differences or finite elements, then
the matrices in question would instead be large and sparse, and typically one would
employ iterative (rather than direct) methods to solve (4.3) [4, 14].

A complication arises when the solution is required at many values of x. Since
the optimal step size, and hence the nodes zk = z(θk) in (4.3), depend on x through
(2.21), each value of x requires the solution of a separate set of resolvent systems. The
factorizations above can alleviate this problem somewhat, but an alternative strategy
is to ignore the fact that the optimal step size depends on x and simply fix h via (2.21)
for a specific value of x in (0, 1), say, x∗. Then the equations of (4.3) are solved only
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Fig. 8. Time taken to solve the PIAS problem (4.1) using various factorizations of the m×m
discretization in space and n = 1, 20, 100 quadrature nodes, respectively. Caching effects present an
unfair advantage to the Schur factorization if one averages over a number of runs, so the results
shown are from just a single run (and hence are not very smooth).

Choose
x∗ ∈ (0, 1)

Compute
h∗ and {zk}

Solve n shifted
systems to find {vk}

Choose
x ∈ (0, x∗]

Compute
{wk(h∗, x)}

u(x, y) ≈

Im Σ
n−1′

k=0

wk(h∗, x)vk

Fig. 9. Algorithm for the efficient computation of the solution at multiple values of x. The
main computational effort lies in the third box, where the linear systems are solved. After this,
evaluating at any x ∈ (0, x∗] simply requires taking a linear combination of the solution vectors.

once, and the resulting vectors vk are used for evaluating the quadrature sum (2.6)
for all other values of x, just with different weights (as summarized in Figure 9). For
most of these x values the step size h will not be optimal, but because the dependence
of h on x is only logarithmic in (2.21) the loss of accuracy will be compensated for
by the fact that far fewer systems have to be solved. Figure 10 shows the accuracy
achieved by fixing such a value of x∗ and solving a single set of resolvent systems. The
results show that for x ∈ (0, x∗) there is a nominal loss of accuracy because of the
nonoptimal step size, but when x ∈ (x∗, 1) the loss can be significant. Hence, when
solving for multiple values of x, the optimal strategy is to choose x∗ to be the largest
x value required.

4.2. Example 2: Laplace equation in a box. Going to higher-dimensional
problems, the numerical linear algebra becomes more challenging. Using the fac-
torizations outlined above can help, but when the operator A can be expressed in
Kronecker product form, Sylvester or Lyapunov solvers offer an even more efficient
computational procedure.

As an illustration, we consider the PIAB problem mentioned in the introduction.
That is, we solve

(4.4)
∂2u

∂x2
+
∂2u

∂y21
+
∂2u

∂y22
= 0, (x, y1, y2) ∈ [0, 1]× [0, 0.1]× [0, 0.1],

subject to u(x, 0, 0) = 1 for x ∈ (0, 1) and u = 0 on all other sides (Figure 11 (left)).
Taking advantage of symmetry, the 2D problem we must solve for each term in the
sum (2.6) is therefore

(4.5) zku−
(
∂2u

∂y21
+
∂2u

∂y22

)
= 2, (y1, y2) ∈ [0.05, 0.1]× [0.05, 0.1],
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Fig. 10. Relative error for the PIAS problem when using x∗ to determine the step size h∗ in
(2.21). The solid lines denote the numerical errors (using spectral collocation with m = 32, 38, and
83, respectively), while the dashed lines show the theoretical errors T +D from (2.22). The error is
computed as the maximum error at the collocation nodes. Note that each of the nine solid curves is
computed from a single set of solutions of the resolvent systems (4.3), as summarized in Figure 9.
When solving for multiple slices the optimal strategy is to pick x∗ as the largest slice.
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Fig. 11. Left: Domain for the PIAB problem (4.4). The boundary conditions are homogeneous
Dirichlet on all boundaries except the shaded face, where u(1, y1, y2) = 1. The shaded region in the
interior of the box depicts the location of the reduced 2D problem shown in Figure 11 (right). Right:
Domain and boundary conditions for the symmetrized 2D problem (4.5)–(4.6).

subject to

(4.6) u(0.1, y2) = u(y1, 0.1) =
∂u

∂y1

∣∣∣∣
(0.05,y2)

=
∂u

∂y2

∣∣∣∣
(y1,0.05)

= 0,

as shown in Figure 11 (right).

In the code shown in Figure 12 we use DMSUITE [26] to compute the m × m
second-order Chebyshev differentiation matrixD2

C with the boundary conditions (4.6)
incorporated via basis recombination [3, section 6.5]. The discretized version of (4.5)
can then be expressed as

(4.7)
(1
2
zkI −D2

C

)
U + U

(1
2
zkI −D2

C

)T
− 2 = 0,

where I is the m×m identity matrix and 2 is the m×m matrix of twos. This matrix
equation takes the form of a Sylvester equation and we employ the MATLAB function
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1 % Solve the particle in a box problem.
2 b = 0.1; % Aspect ratio of box.
3 x = 0.5; % Evaluate in center of box.
4 n = 20; % Number of resolvent solves.
5 m = 20; % Space discretization size.
6 [~, DC2] = cheb2bc(m, [0 1 0 ; 1 0 0]); % Neumann condition one side
7 % and Dirichlet at the other.
8 DC2 = (4/b)^2*DC2; % Scaling.
9 U1 = 2*ones(m - 1); % RHS.

10 [S, DC2] = schur(DC2, 'complex'); % Compute Schur factorisation only once.
11 U1 = S'*U1*S; % Transform the RHS.
12 l2 = 2*(pi/b)^2; % Smallest eigenvalue of operator.
13 [z, w] = nodesandweights(n, x, l2); % Quadrature nodes and weights.
14 % Solve resolvent systems:
15 U = 0; I = eye(m-1);
16 for k = 1:n % <-- This can be changed to parfor.
17 vk = lyap( z(k)/2*I - DC2, z(k)/2*I - DC2.', -U1 );
18 U = U + w(k)*vk;
19 end
20 U = imag(S*U*S'); % Undo the Schur factorization.
21 uApprox = U(1) % Computed solution (center of box).
22 uExact = 7.2988176570485260889e-10; % Know solution (for x = 0.5, b = 0.1).
23 relErr = abs((uApprox - uExact)/uExact) % Relative Error.

Fig. 12. MATLAB code to solve the PIAB problem (4.4). The function cheb2bc is part of the
DMSUITE package [26]. The code takes around 0.01 seconds on a desktop computer and returns a
relative error of 8.7× 10−13 compared to the known solution 7.2988176570485260889 × 10−10 [25].

lyap to solve it efficiently (see line 17 of Figure 12).2 Since we are interested in solving
(4.7) for a number of different zk, we can further increase efficiency by computing the
Schur factorization of D2

C required by the Sylvester solver only once (see lines 10-11
and 20).

Figure 13 (left) shows just how much more efficient the solution procedure be-
comes when we use the Sylvester solver and Schur factorization. Figure 13 (right)
shows the rate of convergence as we modify the code from Figure 12 to run with
n = 1, 2, . . . , 20. The dashed line shows the estimated convergence rate from (2.22),
which agrees well with the numerical results. The plateau in the convergence curve is
due to the ill-conditioning of the spectral collocation matrix.

4.3. Example 3: Laplace equation in an annular cylinder. For a more
interesting domain than the rectangle or box configurations considered above, consider
Laplace’s equation in cylindrical coordinates

(4.8)
∂2u

∂x2
+Au = 0, A =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,

which we will solve in the domain (x, r) ∈ [0, 1] × [1, 3] (Figure 14). For boundary
conditions, let u = 0 on all sides except for the annular face at x = 1, where

(4.9) u(1, r, θ) = u1(r, θ) = (r − 1)(3− r)(1 − sin(θ)).

The operator A may be written in rank 2 Kronecker form as

(4.10) A =
(
D2

r +R−1Dr

)⊗ I +R−2 ⊗D2
θ ,

2lyap is part of the MATLAB Control System Toolbox, but a free alternative is available [22]. If
zk were real, then (4.7) would take the form of a continuous Lyapunov equation, which can be solved
more efficiently than a general Sylvester equation. For complex zk the system is only Lyapunov-like
(as the transpose in (4.7) is not the Hermitian transpose), and although in principle one could exploit
this to solve (4.7) more efficiently, the MATLAB implementation of lyap does not do so.
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Fig. 13. Left: Computation times as the matrix size, m, in the code in Figure 12 is increased
(n is fixed at 20). The different curves represent the different algorithms and factorizations as
described in the text. When m > 10 it becomes significantly faster to use the Sylvester solver lyap

than to solve directly (for example, using the MATLAB kron and backslash functions) and faster
still to precompute the Schur factorizations (as implemented in Figure 12). Right: Convergence
to the solution of the PIAB problem as the number of resolvent solves (i.e., number of quadrature
nodes), n, in Figure 12 is increased (m is fixed at 20). The solid line shows the numerical results,
whereas the dashed line is the slope predicted by (2.22).

x0
1

∂2u
∂x2 +Au = 0

u(1,r,θ
)=

u1(r,θ)

θ

r

zku − Au = u1(r, θ)

u
( 3

, θ
)

=
0

u
( 1

, θ
)=

0

Fig. 14. Left: Domain for the problem (4.8). The boundary conditions are zero on all bound-
aries except the shaded face, where u(1, r, θ) = u1(r, θ). Right: Slice in x of the domain. The
angular and radial coordinates, θ and r, are discretized using Fourier and Chebyshev collocation,
respectively.

as may the shifted operator

(4.11) zI −A =
(
zI −D2

r −R−1Dr

)⊗ I −R−2 ⊗D2
θ ,

where Dr, D
2
r , and Dθ are differential operators, R is a multiplication operator, and I

is the identity. For our discretization we again use spectral collocation, but this time
using Chebyshev expansion in the r direction and Fourier expansion in the θ direction
(0 ≤ θ < 2π) to account for the periodicity. Discretizing the operators in (4.11) the
resolvent systems from (2.6) then become

(4.12)
(
zkI −D2

C −R−1DC

)
U −R−2UD2

F
T − U1 = 0,

where DC and D2
C are the first- and second-order Chebyshev differentiation matrices

with Dirichlet boundary conditions enforced by basis recombination, R is the diagonal
matrix whose entries are the interior Chebyshev points shifted to (1, 3), D2

F is the
second-order Fourier differentiation matrix, and [U1]ij = u1(rj , θi).
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Fig. 15. Solution to (4.8)–(4.9) at 5 slices below x = 0.5 (left) and at r = 2, x ≤ 0.5 (right)
obtained using the approach outlined in Figure 9. Using 21 quadrature nodes and 21 collocation
points in each direction yields an accuracy of around 10 digits and takes around 0.02 seconds. By
contrast, using a full 3D approximation using an additional 21-point Chebyshev discretization in the
x direction takes around 3 seconds. This difference in timing becomes even more pronounced as the
number of collocation points is increased.

Here (4.12) is a more general Sylvester form than (4.7), but we may multiply
through by −R2 to obtain

(4.13)
(
R2D2

C +RDC − zkR
2
)
U + UD2

F
T
+R2U1 = 0,

which can be solved by lyap. Similar to the previous example, we can save some time
by computing the Schur factorizations of D2

F only once. (In fact, in this instance the
factorization is known explicitly in terms of the unitary DFT matrix.) However, since
the shifts in the term multiplying U from the left in (4.13) are no longer constant
diagonals, their Schur factorizations must be computed for each zk.

Rather than repeat the timing and convergence plots of Figure 13 we offer Fig-
ure 15, in which we solve the problem (4.8)–(4.9) for all x ≤ x∗ = 0.5 following the
approach outlined in Figure 9. In particular, using n = 21 quadrature nodes and
m = 21 collocation points in both the r and θ directions is sufficient to provide a
relative accuracy of around 10 digits and takes around 2 hundredths of a second.
By contrast, using a full 3D approximation using an additional 21-point Chebyshev
discretization in the x direction takes around 3 seconds. Changing to m = 31 these
times become around 4–5 hundredths of a second for the contour integral approach
and over 3 minutes for the full 3D discretization. Increasing m further eventually
leads to memory problems in the full 3D case.

5. Extensions.

5.1. The case x → 1. As pointed out in the last paragraph of section 2, the
contour integral method and its error analysis break down when x → 1. The double
exponential decay in the integrand of (2.3) is lost and the trapezoidal rule loses its
efficiency. A remedy suggested in [10, section 4.3.2] is to rewrite (1.3) as

(5.1) u(x, y) =
1

2πi

∫ ∞

−∞
E(x; z(θ))

(
(z(θ)I −A)−1 − (z(θ)− π2)−1I

)
f(y)z′(θ) dθ,

which is permitted by Cauchy’s theorem. To be precise, in that reference a term
z(θ)−1 is subtracted. Here we shift the location of this pole so that it lies on the
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boundary of the strip of analyticity (Figure 2), not within it. Now, as |z| → ∞ the
quantity involving the resolvent (i.e., inside the larger brackets) satisfies O(z−1) in
(2.3) but O(z−2) in (5.1). Because of the exponential behavior of the mapping (2.2)
as θ → ±∞, exponential decay has therefore been recovered when x → 1, but the
double exponential decay has been forfeited. We now consider optimal parameters
and the associated convergence rate for this situation.

The estimate for the discretization error (2.17) remains unchanged, but a new
estimate for the truncation error (2.19) is required since E(x, z(θ)) → 1 as x → 1.
Making use of (2.18), we can combine the z(θ)−2 decay mentioned above with the
growth of z′(θ) to estimate

(5.2) T = O(e−θn).

Matching this with D = O(e−π2/h) requires nh∗ = π2/h∗, and so

(5.3) h∗ = π/
√
n, T +D = O(e−π

√
n).

Comparing (5.3) with (2.21)–(2.22) we see the break-even point occurs when

(5.4) π
√
n = 2W

( √
2π2n

(1− x)
√
π2 + �2

)
,

from which it follows that the break-even values of x for a given value of n, xb(n),
satisfy

(5.5) 1− xb(n) = 2πe−π
√
n/2

√
2n

π2 + �2
.

Alternatively, solving (5.4) for n and substituting this to T +D in (5.3) we define

(5.6) (T +D)b(x) := e
2W−1

(
−(1−x)

√
2(π2+�2)/8

)
,

whereW−1 denotes the lower branch of theW -function. For a given x, this expression
indicates approximately where the errors from using h∗ defined by (2.21) and (5.3)
are equal.

Now, as the error is uniform in x, we can solve for multiple x slices in much the
same way as described in section 4.1. Figure 16 shows how the first two steps in the
optimal strategy for solving single or multiple slices is adapted to account for the case
when x ≈ 1. If x is large enough, or if the tolerance is small enough, then the modified
integral (5.1) with the modified step size h∗ from (5.3) should be used; otherwise it
remains more efficient to use the algorithm as described in sections 2–4. In Figure 17
(right) we see that for a tolerance of 10−10 in the PIAS problem (1.4)–(1.5) the break-
even value of n is around 60. Setting � = 0 and solving (5.6) equal to 10−15 we find
that for any � > 0 it is not until x∗ > 0.999999 that the modified formula obtains 15
digits before the one given in section 2.

5.2. The case � � 1. When �� 1 the implied constant e−(1−x)� in the formula
for M+ mentioned in section 2 becomes significant. To exploit this additional decay
it becomes advantageous to replace the vertical line of integration as defined by (2.2)
with a hyperbola that begins and ends in the left half-plane. That is, we consider for
0 < α < 1

2π the contour

(5.7) Γ : z =
1

2
(π2 − �2) +

i

2
(π2 + �2) sinh(θ + iα), −∞ < θ <∞.
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Fig. 16. The required modifications of Figure 9 to account for the case x ≈ 1 by using the
quadrature approximation to (5.1). The boxes on the left deal with deciding which step size to use
and the box on the right accounts for the (z − π2)−1 term.
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Fig. 17. Convergence of the quadrature approximation to (5.1) using the optimal step sizes, h∗,
defined by (2.21) (open circles) and (5.3) (solid circles) for the PIAS square problem (1.4)–(1.5). As
x → 1 the constant in the (almost) geometric rate obtained when using the former decreases but the

O(e−π
√

n) convergence from (5.3) is essentially independent of x. However, we see that unless x is
very close to 1 or the accuracy requirements are not particularly stringent, then the step size given
by (2.21) is typically more efficient.

It is straightforward to extend the error analysis of section 2 to this contour. The
main point to keep in mind is that the contour of integration in the w-plane is no
longer the real θ-axis but rather the horizontal line θ + iα in the upper half-plane.
This has the consequence that the strip of analyticity is no longer symmetric but has
half-widths 1

2π + α and 1
2π − α in the the lower and upper half-planes, respectively.

A similar computation was done for parabolic PDEs in [27].
Adjusting for the nonsymmetric strip as in the latter reference, one obtains two

discretization errors, namely,

(5.8) D− = O(e−2π(π/2+α)/h), D+ = O(e−2π(π/2−α)/h−(1−x)�).

The formula for the truncation error (5.10) should be modified as well. From (5.7)

(5.9) z(θn) ∼ i

4
(π2 + �2)eθn+iα, n→ ∞,

and therefore we put r = 1
4 (π

2 + �2)eθn , φ = 1
2π + α into (1.10) to obtain

(5.10) T = O(e−
1
2 (1−x)

√
π2+�2 enh/2 sin(α/2+π/4)).

A comparison of the exponential arguments of the three error terms leads to a system
of two equations for solving for the unknowns h and α in terms of x, �, and n. A general
closed form solution appears out of reach, but the two equations can be reduced to
a single scalar equation in α that can then be solved numerically. Specifically, by
comparing the exponential arguments of the error terms above, it is possible to obtain
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Fig. 18. Solution of the PIAB problem of section 4.2 with b = 0.1, x = 0.5, and n = 15. On
the left, numerically computed errors are shown. On the right, the theoretical error as defined by
the sum of the terms in (5.8) and (5.10) is shown. The white dot represents the contour parameters
of section 2, i.e., the vertical contour is used (α = 0) with step size defined by (5.11). The white
triangle represents an improvement of about two or three orders of magnitude if the vertical contour
is replaced by a hyperbola in the left half-plane (with α defined by (5.12)).

the following expressions for h:

(5.11) h =
4 π α

(1− x) �
, h =

2

n
W

(
nπ(π + 2α)

(1 − x)
√
π2 + �2 sin(α/2 + π/4)

)
.

The first expression follows from a comparison of D− and D+. The second expression,
which is identical to (2.21) in the case α = 0, follows from a comparison of D− and
T . By setting the two expressions for h equal one obtains the single equation for α
mentioned above.

Assuming the α > 0 case is a small perturbation of the α = 0 case (which would
be the situation for moderate �), the second expression in (5.11) can be expanded as
a series in α. When only leading-order terms are retained one finds

(5.12) α∗ ≈ (1− x)�

2πn
W

( √
2π2n

(1− x)
√
π2 + �2

)
.

Note that the corresponding step size, given by the first formula in (5.11), is then
identical to the value used before, namely, (2.21).

As validation of (5.12) we offer Figure 18, in which we solve the PIAR problem
from section 3 with b = 0.1 for fixed value of n = 15, but with varying step size, h,
and shift, α. The left panel of Figure 18 shows the numerical error, while the right
panel shows the error model resulting from (5.8) and (5.10). We see that, at least
in the area of interest, our model is a good approximation to the error and that the
choice of α∗ in (5.12) is near optimal.

5.3. Other boundary conditions. Our focus in this paper has been on the
PDE (1.1) with solution u(x, y) = E(x;A)f(y) with E(x; z) as in (1.2). However, as
summarized in Table 1, one can express the solution to (1.1) with different boundary
conditions in a similar manner by using a different function E(x; z).

The analysis presented in section 2 for the particular case of (1.2) can be read-
ily extended to these other boundary conditions. In particular, each of the E(x; z)
functions in Table 1 satisfies the asymptotic behavior (1.10). The main difference is
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Table 1

Functions E(x; z) corresponding to alternative boundary conditions in (1.1) and the location
of their poles, pk, on the positive real axis. The table can be extended to include mixed or Robin
conditions, but to avoid clutter these are omitted. The situation where an inhomogeneous con-
straint appears on the left boundary is readily handled by the use of symmetry and the principle of
superposition.

Left boundary Right boundary E(x; z) pk, k = 1, 2, . . .

u(0, y) = 0 u(1, y) = f(y)
(
sin(

√
z)
)−1

sin(x
√
z) (kπ)2

ux(0, y) = 0 u(1, y) = f(y)
(
cos(

√
z)
)−1

cos(x
√
z) 1

4
(kπ)2

u(0, y) = 0 ux(1, y) = f(y)
(√

z cos(
√
z)
)−1

sin(x
√
z) 1

4
(kπ)2

ux(0, y) = 0 ux(1, y) = f(y)
(√

z sin(
√
z)
)−1

cos(x
√
z) ((k − 1)π)2

the location of their singularities on the positive real axis, given as pk in the final col-
umn of Table 1. Adjusting the conformal map (2.1) to account for p1, the singularity
closest to the origin, we obtain

(5.13) z(θ) =
1

2
(p1 − �2) +

i

2
(p1 + �2) sinh θ

and, after matching the truncation and discretization errors as in section 2, the optimal
step sizes

(5.14) h∗ =
2

n
W

( √
2 π2 n

(1− x)
√
p1 + �2

)
.

Since, for x ≥ 0, W (x) is monotonically increasing, substituting (5.14) to the
formula (2.22) for the total error we find that, for a fixed value of �, the contour inte-
gral method using the conformal map (5.13) and step size (5.14) will converge fastest
for the case of Dirichlet–Dirichlet boundary conditions and slowest for Neumann–
Neumann (with the Neumann–Dirichlet and Dirichlet–Neumann cases being some-
where in between). If �2 � p1, then this difference will be hardly noticeable. However,
if A is singular, i.e., � = 0, then in the Neumann–Neumann case the spectrum of A
coincides with p1 at the origin and we cannot find a suitable contour for the inte-
gral (1.3). However, since the problem is ill-posed in this instance (i.e., the solution
is defined only up to a constant) this is to be expected.

5.4. Imaginary spectrum. We now briefly consider the case of operators whose
spectra lie within the wedge

(5.15) S�,δ : z = −�2 + reiφ, r ≥ 0, |φ| ≥ π − δ, δ ≤ 1
2π,

shown as the unshaded region in Figure 19(c). When Gavrilyuk and coworkers con-
sider sectorial operators in [9, 10] they continue to use a hyperbolic map but modify
their parameters to take account of the wedge. We take a different approach by
choosing the conformal map from the infinite strip in Figure 19(a) to precisely the
region S�,δ. To derive this we observe, as in section 2, that sinh(w) maps the infi-
nite strip of half-width π/2 to the double-slit region with slit tips at ±1, and hence
v = (i sinh(w) + 1)/2 maps to the double-slit region with tips at v = 0 and v = 1
shown in Figure 19(b). Choosing the branch cut to be the negative real axis, v(1−δ/π)

will open up a wedge of the appropriate half-angle, δ, and so, combined with a suitable
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Fig. 19. Conformal map from infinite strip to the exterior of the wedge-like region, S�,δ.

shift and scaling, we have that z = (�2+π2)v(1−δ/π)−�2 will map from the double-slit
region to S�,δ. Combining the two stages gives

(5.16) Γ : z = (π2 + �2)
(
1
2 + 1

2 i sinh(θ + iα)
)1−δ/π − �2, −∞ < θ <∞.

Note that if δ = 0, then (5.16) reduces to (5.7). Figure 19(c) shows the images of
horizontal lines in the w plane under the transformation defined by (5.16). Unlike in
Figure 2 these will not be hyperbolas for any δ �= 0. Furthermore, the image of the
center line is no longer a vertical line, even if α = 0.

We now reproduce the results of section 2 and section 5.2 for this case. Details
of the derivation are omitted as these are almost identical to the δ = 0 case. All the
formulas given below reduce precisely to those of section 5.2 when δ = 0 and those of
section 2 when both δ = 0 and α = 0.

Considering (5.16) we find that if z = reiφ, then

(5.17) r ∼ (π2 + �2)
(
1
2e

θ
)1−δ/π

, φ ∼ (12π + α)(1 − δ/π), θ → ∞,

which, substituted into (1.10), gives a truncation error

(5.18) T = O
(
e−(1−x)

√
π2+�2 sin(α π+δ

2π +π−δ
4 )enh(1−δ/π)/2/21−δ/π

)
.

For δ ≤ 1
2π the discretization errors are essentially the same as in (5.8); thus, com-

paring T and D− gives

(5.19) h =
2

n(1− δ/π)
W

(
nπ2−δ/π(π + 2α)

(1− x)
√
�2 + π2 sin

(
π−δ
4 + απ−δ

2π

)
)
.

Comparing with the first expression in (5.11), one can solve numerically for the opti-
mal values of α∗ and h∗.

6. Conclusion. There were two distinct parts to this paper. In sections 2–3 we
revisited the contour integral method proposed by Gavrilyuk and coworkers [8, 9, 10]
for the solution of elliptic PDEs posed on cylindrical domains and investigated its use
in a more practical setting. We derived explicit formulas for the optimal step size and
compared the resulting quadrature approximation to the standard series solution for
the textbook problem of Laplace’s equation on a square. The techniques used were
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similar to those for parabolic PDEs discussed in [14, 27, 16], but because of additional
singularities in the integrand in the elliptic case the optimal convergence rate is only
subgeometric and not fully geometric, as is the case for parabolic PDEs.

In the second part, section 4, we focused on efficient techniques for solving the
resolvent systems in the case when the operator A is discretized by spectral colloca-
tion. We demonstrated that execution speed can be improved significantly by a priori
factorization strategies, such as the Hessenberg and Schur forms. When the operator
can be expressed in Kronecker product form, a major additional advantage can be
gained from the use of specialized Sylvester or Lyapunov solvers. Timing comparisons
have shown that such an implementation is faster by orders of magnitude than the
standard approach of a full 3D tensor product formulation. These same factorizations
are also applicable in the case of parabolic PDEs, but as far as we are aware they
have received little attention in the literature.

The optimal contour and parameters derived in the first part are independent
of the discretization of the operator A and hence are equally applicable in the case
of finite difference or finite element methods, or even off-the-shelf software for the
lower-dimensional subproblems. In many such instances the resulting matrices will
be sparse and hence iterative methods are used to solve the linear systems, making the
factorizations discussed above less suitable. Investigating preconditioning strategies
for iterative methods is beyond the scope of this paper, but this has been explored in
the case of parabolic PDEs [4, 14].

Finally, it should be emphasized that the method we discuss is not universally
applicable to all elliptic PDEs. In particular, the method is intrinsically linked to
PDEs posed on cylindrical domains, with the variable x playing the role of the time
variable in the parabolic case. In addition, the operator A should be close to normal,
with eigenvalues on or near the negative real axis, so that its resolvent norm is bounded
away from this axis. On the other hand, much more general PDEs than those used
as test examples in this paper can be solved by this method. This includes problems
with different kinds of boundary conditions, a force term, or nonconstant coefficients
in the operator A.

Contour integral methods are now well established as a means of solving parabolic
PDEs. We believe that with the combination of effectively reducing the problem di-
mension, the trivial parallelization, and the possibility of avoiding corner singularities,
they also provide a powerful tool for solving elliptic PDEs.
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