
SCIENCE CHINA
Mathematics

. ARTICLES . September 2012 Vol. 55 No. 9: 1749–1760

doi: 10.1007/s11425-012-4474-z

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 math.scichina.com www.springerlink.com

Chebfun and numerical quadrature

HALE Nicholas & TREFETHEN Lloyd N.∗

Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK

Email: hale@maths.ox.ac.uk, trefethen@maths.ox.ac.uk

Received April 12, 2012; accepted June 6, 2012; published online July 23, 2012

Abstract Chebfun is a Matlab-based software system that overloads Matlab’s discrete operations for vectors

and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun’s

fast capabilities for Clenshaw-Curtis and also Gauss-Legendre, -Jacobi, -Hermite, and -Laguerre quadrature,

based on algorithms of Waldvogel and Glaser, Liu and Rokhlin. Then we consider how such methods can

be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals,

functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation.

Keywords Chebfun, Clenshaw-Curtis quadrature, Gauss quadrature, barycentric interpolation formula,

Riemann-Liouville integral, fractional calculus

MSC(2010) 41A55, 97N80

Citation: Hale N, Trefethen L N. Chebfun and numerical quadrature. Sci China Math, 2012, 55(9): 1749–1760,

doi: 10.1007/s11425-012-4474-z

1 Introduction

One of the fundamental problems in numerical mathematics is quadrature, the approximate evaluation

of an integral such as

I =

∫ 1

−1

w(x)f(x)dx, (1.1)

where f is a continuous function on [−1, 1] and w is a weight function which we take to be positive and

continuous on (−1, 1), though perhaps approaching 0 or ∞ as x → ±1. The starting point of almost

every quadrature algorithm is the notion of an (n+ 1)-point quadrature formula,

In =

n∑
k=0

wkf(sj), (1.2)

where s0, . . . , sn are a set of nodes in [−1, 1] and w0, . . . , wn are a set of weights. The reason for using

the parameter n for a quadrature formula of n + 1 points is that usually, the weights {wk} are chosen

according to the principle that the approximation should be exact if f is a polynomial of degree at most

n, i.e., In = I for f ∈ Pn.

Chebfun [23], which is an open-source software system built on Matlab, contains implementations of

what we believe are the best available algorithms for computing many families of quadrature nodes and

weights, particularly the algorithms of Waldvogel [24] and Glaser, Liu and Rokhlin [7]. The purpose of

∗Corresponding author

1750 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

this paper is twofold: first, to call attention to these remarkable algorithms and their Chebfun implemen-

tations, and second, to show how Gauss-Jacobi formulas in particular lead to very flexible computation of

integrals in the Chebfun environment, including an application to the computation of fractional deriva-

tives and integrals. Finally, following an observation of Wang and Xiang [25] at Central South University

in China, we show how Chebfun takes advantage of these methods to enable barycentric interpolation in

Legendre and related points even on grids of sizes in the millions.

We set the stage with a quick illustration. The following Chebfun computation computes three Gauss-

Legendre quadrature nodes and the corresponding weights. The name legpts comes from “Legendre

points”, another term for Gauss-Legendre quadrature nodes, since these nodes are the roots of the

Legendre polynomial Pn+1.

>> [s,w] = legpts(3)

s =

-0.774596669241483

0

0.774596669241483

w =

0.555555555555556 0.888888888888889 0.555555555555556

If we change 3 to 10000, the same command computes nodes and weights for the 10000-point Gauss-

Legendre quadrature rule. Here is the time required for this computation on a 2010 desktop machine:

>> tic, [s,w] = legpts(10000); toc

Elapsed time is 0.268227 seconds.

2 Gauss and Clenshaw-Curtis quadrature

As is well known and described in many books, the nodes and weights for Gauss quadrature are determined

by the condition that the formula should have maximal polynomial order, namely I = In whenever f is

a polynomial of degree at most 2n + 1. If the weight function is a constant, w(x) = 1, this is the case

of Gauss-Legendre quadrature. An alternative for w(x) = 1 is Clenshaw-Curtis quadrature, in which the

nodes are the Chebyshev points sj = cos(jπ/n) [3]. Here the polynomial order is only n, but as explained

in [14] and [20], this large difference in polynomial order often makes little difference in practice.

Chebfun, which represents functions to machine precision by polynomial or piecewise polynomial in-

terpolation in Chebyshev points, uses Clenshaw-Curtis quadrature as its basic integration tool. The

(n + 1)-point Clenshaw-Curtis quadrature approximant In is readily computed in O(n logn) operations

by converting the data to a Chebyshev series and applying the Fast Fourier Transform (FFT) [6], and

the constant implicit in the “O” is very small. Alternatively, Chebfun enables one to compute explicit

Clenshaw-Curtis nodes and weights with the chebpts command, in analogy to the example shown above:

>> [s,w] = chebpts(3)

s =

-1

0

1

w =

0.333333333333333 1.333333333333333 0.333333333333333

>> tic, [s,w] = chebpts(10000); toc

Elapsed time is 0.003027 seconds.

This fast computation makes use of a Chebfun implementation of an O(n logn) algorithm published by

Waldvogel [24], which determines the weights explicitly, again by use of the FFT.

Hale N et al. Sci China Math September 2012 Vol. 55 No. 9 1751

Table 1 Orthogonal polynomial and Gauss quadrature capabilities in Chebfun. The domains listed are defaults, which

are automatically scaled to other intervals such as [a, b] as appropriate.

Weight Orthogonal Nodes

Name Domain function w(x) polynomials and weights

Legendre [−1, 1] 1 legpoly legpts

Chebyshev [−1, 1] (1 − x2)−1/2 chebpoly chebpts

Jacobi [−1, 1] (1− x)α(1 + x)β jacpoly jacpts

Hermite (−∞,∞) exp(−x2/2) hermpoly hermpts

Laguerre [0,∞) exp(−x) lagpoly lagpts

Note that although the Chebfun computation of Gauss-Legendre quadrature nodes and weights is very

fast, for Clenshaw-Curtis it is even faster. For smooth functions at least, Clenshaw-Curtis quadrature is

a powerful tool for any application.

Sometimes, however, one wants to work with Gauss formulas, with their optimal order of polynomial

accuracy. Here there are several familiar choices for the weight function in (1.1):

Gauss-Legendre: w(x) = 1,

Gauss-Chebyshev: w(x) = (1− x2)−1/2,

Gauss-Jacobi: w(x) = (1− x)α(1 + x)β , α, β > −1.

Both Gauss-Legendre and Gauss-Chebyshev are special cases of Gauss-Jacobi. In Chebfun, Gauss-Jacobi

nodes and weights are available through the command jacpts. Chebyshev, Legendre, and Jacobi poly-

nomials are also available through chebpoly, legpoly, and jacpoly. There are analogous commands

for Gauss-Hermite quadrature on (−∞,∞) and Gauss-Laguerre quadrature on [0,∞), as summarized in

Table 1.

3 Golub-Welsch and Glasier-Liu-Rokhlin algorithms

A famous algorithm for computing Gauss quadrature nodes and weights was introduced by Golub and

Welsch (GW) [8] in 1969. This algorithm reduces the problem to a real symmetric tridiagonal eigenvalue

problem, which can be solved in principle in O(n2) time. Thanks to the powerful and numerically stable

algorithms that have been developed for calculating matrix eigenvalues, this leads to an accurate and

effective way of computing quadrature nodes and weights that has been the standard for two generations.

An unfortunate feature is that Matlab’s black-box eigenvalue solver does not take advantage of the

tridiagonal structure, so the operation count worsens from O(n2) to O(n3).

Whether O(n2) or O(n3), the operation count of the GW algorithm is too high for this method to be

effective when n is in the thousands or higher. For many applications this hardly matters, since often

one does not need a high-order Gauss formula, but it imposes an unfortunate limit on our numerical

explorations, especially when one considers that Clenshaw-Curtis formulas are applicable in O(n logn)

time. Consequently it was a striking advance when Glaser, Liu and Rokhlin (GLR) [7] introduced an

algorithm that computes Gauss quadrature nodes and weights in O(n) operations. The GLR algorithm

calculates the nodes and weights one at a time, hopping from each node to the next by an ingenious

method involving a 30-term Taylor series and a few steps of Newton iteration. The work is just O(1)

operations per node, and that is why the overall operation count is O(n). This speed is rather startling

when one considers that merely evaluating a Legendre polynomial at a point requires O(n) operations.

Chebfun contains implementations of the GLR algorithm for all the classes of polynomials listed in

Table 1, whose uniformly high efficiency is summarized by the following experiment, which arbitrarily

takes parameters α = 2 and β = 3 for Gauss-Jacobi.

1752 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Gauss:
Glaser−Liu

-Rokhlin

Gauss:
Golub−Welsch

(Matlab)

degree n

ti
m

e
(s

)

Clenshaw−Curtis:
Waldvogel

Figure 1 Comparison of Chebfun timings for computation of Gauss-Legendre nodes and weights by the Glaser-Liu-

Rokhlin and Golub-Welsch algorithms. The third curve shows that computing Clenshaw-Curtis nodes and weights, by the

algorithm of Waldvogel, is even faster.

>> tic

>> [s,w] = legpts(1000);

>> [s,w] = chebpts(1000);

>> [s,w] = jacpts(1000,2,3);

>> [s,w] = hermpts(1000);

>> [s,w] = lagpts(1000);

>> toc

Elapsed time is 0.598015 seconds.

For the basic case of Gauss-Legendre quadrature, Figure 1 shows Chebfun timings for the GLR and

Matlab GW algorithms as a function of n. (Chebfun’s default for larger values of n is to use the GLR

algorithm, but GW is available by setting a flag.) It is clear that GW becomes impractical once n is

in the thousands, whereas GLR can be used even for n in the millions1) . The plot also shows data for

Clenshaw-Curtis nodes and weights, a reminder that this problem remains simpler than Gauss quadrature.

4 Chebfun quadrature for smooth functions

The aim of Chebfun is to compute with functions of a real variable in a manner that has “the feel of

symbolics but the speed of numerics”. For smooth functions, this is achieved by representing functions

by polynomial and piecewise polynomial interpolants, and by overloading familiar Matlab commands for

discrete vectors to their natural analogues for functions. For example, consider the function

f(x) = ex sin(3x) tanh(5 cos(30x))

defined on the interval [−1, 1]. The following commands construct a chebfun of f and produce the plot

shown in Figure 2:

>> x = chebfun(’x’);

>> f = exp(x).*sin(3*x).*tanh(5*cos(30*x));

>> plot(f)

1) In a forthcoming paper [11], Hale and Townsend present a new technique based upon asymptotic expansions that allows

even faster and more accurate computation for large n. This has subsequently replaced GLR as the default algorithm used

by Chebfun [23].

Hale N et al. Sci China Math September 2012 Vol. 55 No. 9 1753

−2

−1

0

1

2

−1 −0.5 0 0.5 1

Figure 2 An example of a smooth chebfun represented by a single global polynomial interpolant through Chebyshev

points. The function is f(x) = ex sin(3x) tanh(5 cos(30x)), and the polynomial is of degree 3209.

The Chebfun representation consists of a global polynomial of degree 3209, an interpolant through 3210

Chebyshev points, and this degree has been determined adaptively to achieve approximately machine

precision.

>> length(f)

ans = 3210

For details of the underlying approximation theory, see [22]. Once the chebfun has been constructed,

all kinds of operations can be performed, each relying on a Chebfun implementation of an appropriate

numerical algorithm, typically at high speed with accuracy close to machine precision. For example, the

maximum of f is computed by differentiating f , finding the roots of f ′, and evaluating f at those roots:

>> max(f)

ans = 1.782604429158422

Computing the 2-norm of f , defined as the square root of the integral of |f(x)|2, entails the computation

of an integral by Clenshaw-Curtis quadrature:

>> norm(f)

ans = 1.250542878304186

Chebfun integrals arise in other contexts too. For example, the sum command determines the integral

over the domain of definition:

>> sum(f)

ans = -0.017790593076879

The transpose symbol ’ is used in the usual Matlab fashion to signal the computation of an inner

product, the continuous analogue of a vector inner product, again realized via an integral evaluated by

Clenshaw-Curtis quadrature:

>> f’*exp(f)

ans = 2.149796850732142

Calculations like these happen in milliseconds, and the results are typically accurate in all but perhaps

the final digit. Comparisons between Chebfun and specialized adaptive quadrature routines have indicated

that Chebfun is generally as reliable and accurate as specialized software and runs at a comparable speed,

being slower by a factor in the range 1–10 (see [1, 10]). In [1] it was noted that a particularly impressive

1754 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

0 1 2 3 4
0

1

2

3

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

Figure 3 Chebfun is at heart a one-dimensional tool, but it can be applied to quadrature over a rectangle by taking a

product. The example integrand plotted here is f(x, y) = sin(5x + 2y) + sin(x2 + y3).

competitor in such comparisons was the code coteda by Espelid [4], a precursor of Espelid’s higher-order

code da2glob [5]. A difference between Chebfun and the usual approach to adaptive quadrature is that

Chebfun attempts adaptively to resolve the function itself before integrating it, whereas most quadrature

algorithms adapt on the integral rather than the function. This difference is the basic reason why Chebfun

tends to lie at the high-reliability, low-speed end of the range. Gonnet, however, has also recommended

adaptive quadrature based on resolving the function rather than the integral, and his algorithms presented

in [9] share Chebfun’s characteristics of high reliability at some cost in speed. Algorithm 3 of [9] has

subsequently been developed into the code quadcc in Octave as of version 3.4 [13].

5 Chebfun quadrature over a rectangle

We like to think that Chebfun can do “almost anything in one dimension”. It is a longstanding ambition

of the Chebfun team to move to two or three dimensions, but so far, this project lies mainly in the future.

For the specific problem of quadrature over a rectangle, however, one can use a product of two copies

of any 1D quadrature method to get results. In particular, Chebfun can be used in this way, and the

result are often quite good, especially for smooth functions.

For example, Figure 3 shows a contour plot of the function

f(x, y) = sin(5x+ 2y) + sin(x2 + y3)

over the rectangle 0 � x � 4, 0 � y � 3. The integral of f over this region can be computed by Chebfun

with the following commands:

>> tic, f = @(x,y) sin(5*x+2*y)+sin(x.^2+y.^3);

>> Iy = @(y) sum(chebfun(@(x) f(x,y),x([1 end])));

>> I = sum(chebfun(@(y) Iy(y),y([1 end]),’vectorize’)), toc

I = 0.862836879410888

Elapsed time is 0.814382 seconds.

This result is probably accurate in all but perhaps the final digit, since it agrees with the following

computation by Matlab’s dblquad:

>> tic, I = dblquad(f,0,4,0,3,1e-11,@quadl), toc

I = 0.862836879410889

Elapsed time is 24.46229 seconds.

Hale N et al. Sci China Math September 2012 Vol. 55 No. 9 1755

In this example dblquad appears much slower than tensor product Chebfun, but we make no claims about

Chebfun performance for 2D integrals in general. The conclusion reached in [1], based on a collection

of computations of this kind, was that Chebfun is typically about 15 times slower for integrals over

rectangles than a tensor product of integrations by the routine coteda.

6 Chebfun quadrature for functions with point singularities

Chebfun’s representation of functions is actually more general than has been indicated so far in this paper.

Chebfun can also work with functions with algebraic endpoint or interior point algebraic singularities,

which it treats by representing a function by a concatenation of pieces of the form (x− a)α(b− x)βp(x),

where p is a polynomial and α and β may be be negative or positive, fractional or integer. These methods

originate with the contribution of Richardson [16], and the exponents α and β can be specified by the

user or determined automatically. Once found, exponents are adjusted in the appropriate way in further

computations. For example, if the chebfun representing a function f has a singularity with an exponent

α at some point, then the command sqrt(f) produces a chebfun with an exponent α/2 at the same

point.

This is where more specialized quadrature formulas come into the calculation. To integrate one of the

functions just described, which may have point singularities involving arbitrary exponents, the mathe-

matically ideal tool is Gauss-Jacobi quadrature, with parameters α and β chosen in accordance with the

singularities at one or both ends of each subinterval. This is exactly the tool used by Chebfun, with nodes

and weights computed on the fly by the GLR algorithm. The result is great accuracy and flexibility in

computing integrals. For example, here we make a chebfun of the gamma function Γ(x) on [−4.5, 4.5],

plotted in Figure 4. Chebfun automatically determines that there are simple poles at −4,−3,−2,−1, 0

and splits the domain into six pieces.

>> g = chebfun(@gamma,[-4.5,4.5],’blowup’,’on’,’splitting’,’on’);

If Chebfun is asked to compute the integral, it adds up the integrals from each of the six pieces. Three

of the contributions are +∞ and three are −∞, so the result is Not-a-Number:

>> sum(g)

ans = NaN

If Γ(x) is replaced by |Γ(x)|, all six pieces agree in sign, and we get infinity:

>> absg = abs(g);

>> sum(absg)

ans = Inf

True numerical results appear as soon as one weakens the singularities, so that the integrand becomes

integrable:

>> sum(absg.^-.5)

ans = 7.855535000849889

>> sum(absg.^.5)

ans = 15.756773863531844

>> sum(absg.^.99)

ans = 5.511556606477695e+02

>> sum(absg.^.9999)

ans = 5.417630420657751e+04

To obtain these numbers, Chebfun has silently adjusted the exponents and then applied the corresponding

Gauss-Jacobi formulas. Chebfuns for |Γ(x)|1/2 and |Γ(x)|−1/2 are also plotted in Figure 4.

1756 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10
f (x) = Γ (x) sum(f) = NaN

−4 −3 −2 −1 0 1 2 3 4
0

2

4

6

8

f (x) = | Γ (x)| 0.5 sum(f) = 15.757

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1.0

1.5

2.0

2.5

f (x) = | Γ (x)| −0.5 sum(f) = 7.856

Figure 4 Chebfun represents functions with point singularities in a piecewise fashion, where each piece consists of a

product of a Chebyshev interpolant and singular terms at one or both ends. Integrals of such functions are then computed

by Gauss-Jacobi quadrature with appropriate exponents.

7 Fractional derivatives and integrals

An established idea of analysis is the notion of fractional calculus, the study of derivatives and integrals

of fractional rather than integral order. Suppose, for example, that u is a continuous function defined on

an interval [a, b], and consider the Riemann-Liouville integral

I(ν)u(x) =
1

Γ(ν)

∫ x

a

(x− s)ν−1u(s)ds. (7.1)

If ν is an integer, (7.1) gives the ν-th indefinite integral of u, and one may take the same formula as

a definition of a ν-th-order fractional integral for arbitrary ν > 0. By differentiating the result one or

more times, we may extend the same definitions to fractional differentiation operators. There is also

an alternative notion of the fractional derivative, due to Caputo, in which one differentiates first and

then integrates. Ideas like this have far-reaching generalizations which are described in various places

including [15] and [18].

The integrand of (7.1) has a singularity of type xν−1, which makes it a perfect candidate for evaluation

by Chebfun’s Gauss-Jacobi quadrature capabilities as described in the last section. In Chebfun, the diff

command computes derivatives, an overload of Matlab’s diff for finite differences. If one specifies a

non-integer order to diff, Chebfun applies (7.1) (or a Caputo alternative if the flag ’caputo’ is given)

to compute the fractional derivative. The same fractional-order functionality is also accessible through

the indefinite integral command cumsum.

Figure 5 illustrates fractional differentiation by ploting sinx on the interval [0, 4π] together with its

derivatives of orders α = 0.1, 0.2, . . . , 1. Each curve is approximately a translation of sinx by a distance

πα/2 to the left, but these translations are only approximate because of effects of the boundary at

x = 0. Unlike integer-order differentiation and (up to constants) integer-order integration, fractional-

order differentiation and integration are non-local operations.

We should say a word to clarify the Chebfun computations involved in implementing these operations

of fractional calculus. To evaluate (7.1) at a single point x, the system constructs a chebfun with an

appropriate singularity at one end and then integrates it by Gauss-Jacobi quadrature. Producing results

Hale N et al. Sci China Math September 2012 Vol. 55 No. 9 1757

0 π 2π 3π 4π

−1

0

1

Figure 5 The function sinx on [0, 4π] together with its derivatives of fractional orders 0.1, 0.2, . . . , 1. These computations

rely on Chebfun’s Gauss-Jacobi quadrature operations for sampling functions defined by the integral (6.1).

like those of Figure 5, however, requires the computation of new chebfuns representing (7.1) as a function

of x. This is done by first fixing the singularity appropriately, then constructing a chebfun adaptively in

the standard fashion by sampling the function on finer and finer grids until convergence to 15 or 16 digits

is achieved.

Although nothing mathematically deep is going on here, computations like these would be sufficiently

complicated without Chebfun that it is rare to see a figure like Figure 7 in which numerically evaluated

fractional derivatives or integrals are plotted. Indeed, we do not know of any such figures in the literature.

This suggests that Chebfun offers entirely new possibilities for practical explorations of fractional integrals

and derivatives.

8 Functions defined on unbounded intervals

Chebfun also contains algorithms for representing functions, and integrating them, on unbounded integrals

of the form [a,∞), (−∞, b], or (−∞,∞). These were implemented by Rodrigo Platte around 2008, and

like the other features described here, they have not been presented in published form before. Chebfun

treats unbounded intervals by applying nonlinear changes of variables to reduce them to [−1, 1]. The

software makes it possible to utilize quite arbitrary maps, but by default, the maps are rational functions

of the form (cx + d)/(ex + f). In practice, functions can be represented so long as they approach zero,

or a constant, at a reasonably rapid rate as x approaches the infinite limits.

This leads to a quite efficient Chebfun capability for quadrature on infinite intervals, ultimately achieved

by applying Chebfun’s standard methods to the transplant on [−1, 1]. For example, here is the integral

of e−x from 0 to ∞:

>> f = chebfun(’exp(-x)’,[0,inf]);

>> length(f)

ans = 41

>> sum(f)

ans = 1.000000000000000

Here is the result for the more complicated function e−x sin(100x):

>> f = chebfun(’sin(100*x).*exp(-x)’,[0,inf]);

>> length(f)

ans = 6403

>> sum(f)

1758 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

ans = 0.009999000099987

9 Barycentric nodes and weights

In this final section we describe Chebfun’s capabilities for computing barycentric interpolation weights

associated with Legendre or more generally Gauss-Jacobi points quickly even for large n, based on the

GLR algorithm and an observation of Wang and Xiang [25].

Suppose s0, . . . , sn are a set of n + 1 distinct points, and f0, . . . , fn are a set of data given at these

points. Then it is well known that the unique polynomial interpolant of degree at most n through these

data is given by the barycentric interpolation formula [2, 22]:

p(x) =
n∑

j=0

vjfj
x− sj

/
n∑

j=0

vj
x− sj

, (9.1)

with the special case p(x) = fj if x = sj for some j, where the barycentric weights {vj} are defined by

vj =
C∏

k �=j(sj − sk)
, (9.2)

and the constant C can be chosen arbitrarily since it cancels in the numerator and denominator of (9.1).

An equivalent formula is

vj =
C

�′(sj)
, (9.3)

where � is the node polynomial

�(x) =

n∏
j=0

(x− sj) (9.4)

(see [22, Chapter 5]). The formula (9.1) is not just mathematically correct, but the basis of a fast

and numerically stable numerical algorithm, at least when the interpolation points are distributed with

suitable clustering near ±1, as proved by Higham [12].

If {sj} are Chebyshev points, then (9.2) reduces to a simple form involving barycentric weights ±1

of alternating sign, or ±1/2 for j = 0 and n [17]. If {sj} are Legendre or more generally Gauss-Jacobi

points, on the other hand, no simple formula for the barycentric weights is known. However, Wang and

Xiang [25, Theorem 3.1] have observed that they are related to the quadrature weights as follows:

vj = (−1)j
√
(1 − s2j)wj . (9.5)

One can derive this formula from (9.3) and the fact that the quadrature weights for the Gauss-Jacobi

formula with parameters α, β are given by

wj =
C(α,β)

(1− s2j)[�
′(sj)]2

(9.6)

(see [19, Equation (15.3.1)] and [26]), where C(α,β) is a constant. Chebfun uses these results to compute

quadrature weights {wj} and barycentric weights {vj} as follows. First, the GLR algorithm returns

derivatives �′(sj) at the quadrature nodes in O(n) operations. The weights are then computed from

(9.3) and (9.6). Thus we immediately get an O(n) algorithm for barycentric interpolation in Legendre or

Gauss-Jacobi points. Chebfun returns both sets of weights when legpts or jacpts is invoked with an

additional argument, like this:

>> [s,w,v] = legpts(3)

s =

-0.774596669241483

Hale N et al. Sci China Math September 2012 Vol. 55 No. 9 1759

0

0.774596669241483

w =

0.555555555555556 0.888888888888889 0.555555555555556

v =

0.500000000000000

-1.000000000000000

0.500000000000000

Increasing 3 to 10000, as in the opening example of this paper, gives barycentric weights with no additional

computing time.

>> tic, [s,w,v] = legpts(10000); toc

Elapsed time is 0.263366 seconds.

Suppose, for example, one wished to evaluate at x = 0 the polynomial interpolant in 10000 Legendre

points to f(x) = (1 + 1000x2)−1. One could proceed like this, using Chebfun’s bary command with

explicit third and fourth arguments for barycentric nodes and weights:

>> f = 1./(1+1000*s.^2);

>> p0 = bary(0,f,s,v)

p0 = 0.999999999999998

This is very close to the correct answer, which would match the value 1 to many more than 16 digits

of precision. Chebfun also generalizes these computations to barycentric interpolation by Hermite and

Laguerre polynomials (hermpts, lagpts), for which it is possible to show a similar relation between the

quadrature weights {wj} and the node polynomial �′(sj).

Acknowledgements This work was supported by the MathWorks, Inc., King Abdullah University of Science

and Technology (KAUST) (Award No. KUK-C1-013-04), and the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007–2013)/ERC (Grant Agreement No. 291068) 2) .

References

1 Assheton P. Comparing Chebfun to Adaptive Quadrature Software. MS Thesis, Mathematical Modelling and Scientific

Computing, Oxford University, 2008

2 Berrut J P, Trefethen L N. Barycentric Lagrange interpolation. SIAM Rev, 2004, 46: 501–517

3 Clenshaw C W, Curtis A R. A method for numerical integration on an automatic computer. Numer Math, 1960, 2:

197–205

4 Espelid T O. Doubly adaptive quadrature routines based on Newton-Cotes rules. BIT Numer Math, 2003, 43: 319–337

5 Espelid T O. Extended doubly adaptive quadrature routines. Tech Rep 266. Department of Informatics, University of

Bergen

6 Gentleman W M. Implementing Clenshaw-Curtis quadrature I and II. J ACM, 1972, 15: 337–346

7 Glaser A, Liu X, Rokhlin V. A fast algorithm for the calculation of the roots of special functions. SIAM J Sci Comp,

2007, 29: 1420–1438

8 Golub G H, Welsch J H. Calculation of Gauss quadrature rules. Math Comp, 1969, 23: 221–230

9 Gonnet P. Increasing the reliability of adaptive quadrature using explicit interpolants. ACM Trans Math Softw, 2010,

37: 26:2–26:32

10 Gonnet P. Battery test of Chebfun as an integrator. http://www.maths.ox.ac.uk/chebfun/examples/quad, 2010

11 Hale N, Townsend A. Fast and accurate computation of Gauss–Jacobi nodes and weights. In preparation, 2012

12 Higham N J. The numerical stability of barycentric Lagrange interpolation. IMA J Numer Anal, 2004, 2: 547–556

13 Octave software. http://www.octave.org/

14 O’Hara H, Smith F J. Error estimation in the Clenshaw-Curtis quadrature formula. Comput J, 1968, 11: 213–219

2) The views expressed in this article are not those of the ERC or the European Commission, and the European Union is

not liable for any use that may be made of the information contained here.

1760 Hale N et al. Sci China Math September 2012 Vol. 55 No. 9

15 Oldham K B, Spanier J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York-

London: Academic Press, 1974

16 Richardson M. Approximating Divergent Functions in the Chebfun System. MS Thesis, Mathematical Modelling and

Scientific Computing, Oxford University, 2009

17 Salzer H E. Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n), ν = 0(1)n; some unnoted advantages.

Computer J, 1972, 15: 156–159

18 Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. New York: Gordon and Breach, 1993

19 Szegő G. Orthogonal Polynomials. Providence, RI: Amer Math Soc, 1939

20 Trefethen L N. Is Gauss quadrature better than Clenshaw-Curtis. SIAM Rev, 2008, 50: 67–87

21 Trefethen L N. Six myths of polynomial interpolation and quadrature. Math Today, 2011, 47: 184–188

22 Trefethen L N. Approximation Theory and Approximation Practice. Philadelphia: SIAM, in press

23 Trefethen L N, et al. Chebfun Version 4.0, 2011, http://www.maths.ox.ac.uk/chebfun/

24 Waldvogel J. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer Math, 2006, 46:

195–202

25 Wang H, Xiang S. On the convergence rates of Legendre approximation. Math Comp, 2012, 81: 861–877

26 Winston C. On mechanical quadratures formulae involving the classical orthogonal polynomials. Ann Math, 1934, 35:

658–677

