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An O(N(log N)2/ log log N) algorithm for the computation of the discrete Legendre transform and its
inverse is described. The algorithm combines a recently developed fast transform for converting between
Legendre and Chebyshev coefficients with a Taylor series expansion for Chebyshev polynomials about
equally spaced points in the frequency domain. Both components are based on the fast Fourier transform,
and as an intermediate step we obtain an O(N log N) algorithm for evaluating a degree-(N − 1) Cheby-
shev expansion on an N-point Legendre grid. Numerical results are given to demonstrate performance
and accuracy.
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1. Introduction

Given N values c0, . . . , cN−1, the discrete Legendre transform (DLT) or finite Legendre transform cal-
culates the discrete sums

fk =
N−1∑
n=0

cnPn

(
xleg

k

)
, 0 � k � N − 1, (1.1)

where Pn(x) denotes the degree-n Legendre polynomial and the Legendre nodes, 1 > xleg
0 > · · · >

xleg
N−1 > −1, are the roots of PN (x). The inverse DLT (IDLT), which computes c0, . . . , cN−1 given

f0, . . . , fN−1, can be expressed as

cn =
(

n + 1

2

) N−1∑
k=0

wleg
k fkPn

(
xleg

k

)
, 0 � n � N − 1, (1.2)

where wleg
0 , . . . , wleg

N−1 are the Gauss–Legendre quadrature weights. It is the goal of this paper to describe
fast algorithms for computing the DLT and IDLT.

In a number of situations, the orthogonality of the Legendre polynomials with respect to the stan-
dard L2-norm can make expansions in Legendre polynomials advantageous over the more commonly
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Fig. 1. Some existing fast algorithms related to the DLT and IDLT. Solid lines depict transforms discussed in this paper. The
‘nonuniform discrete cosine transform’ (NDCT) is described in Section 2, the DLT in Section 3 and the IDLT in Section 4. This
table is not complete and some of the papers referenced belong to more than one of the connecting lines; for example, Keiner
(2009) computes the DLT by combining a transformation from Legendre to Chebyshev coefficients with an NDCT. We have tried
to include as many of the key papers as possible, without overcomplicating the diagram.

used Chebyshev expansions. However, because fast algorithms are not as readily available (or involve
a precomputational cost that inhibits applications employing adaptive discretizations), Legendre expan-
sions are typically considered less convenient in practice. By deriving fast algorithms for the DLT and
IDLT, we take some steps towards removing this barrier and allowing Legendre expansions and adaptive
discretizations at Legendre nodes to become a practical tool in computational science.

Our approach makes use of the fast Chebyshev–Legendre transform described in Hale & Townsend
(2014), which is based on carefully exploiting an asymptotic expansion of Legendre polynomials and
the fast Fourier transform (FFT). Using the FFT has advantages and disadvantages. On the one hand,
fast and industrial-strength implementations of algorithms for computing the FFT are ubiquitous. On the
other hand, the FFT is restricted to equally spaced samples and is therefore not immediately applicable
to situations like computing the DLT. In this paper we overcome the equally spaced restriction by con-
sidering Legendre nodes as a perturbation of a Chebyshev grid and employing a truncated Taylor series
expansion. A similar approach for the discrete Hankel transform is described in Townsend (2015a).

Examples of existing approaches that may be used or adapted to compute the DLT include butterfly
schemes (O’Neil et al., 2010), divide-and-conquer approaches (Keiner, 2008; Tygert, 2010) and the
oversampled nonuniform discrete cosine transform (NDCT) (Potts, 2003; Fenn & Potts, 2005; Keiner et
al., 2009). The algorithm presented here has three main advantages: (1) it is simple (the core ingredients
are just the FFT and Taylor approximations); (2) there is essentially no precomputational cost (unlike,
for example, butterfly schemes in O’Neil et al., 2010) and (3) there are no algorithmic parameters for
the user to tweak (as they are all optimally determined by analysis). In particular, these final two points
make the algorithm presented in this paper well suited to applications where N is not known in advance
or when there are multiple accuracy goals. Fig. 1 shows a number of these approaches for computing
the DLT and related transforms.

It is interesting to note that before the work of Glaser et al. (2007) there was no known stable method
for computing the Legendre nodes in fewer than O(N2) operations.1 Therefore, prior to 2007, it seems

1 The current state of the art for computing the Legendre nodes is due to Bogaert (2014), whose O(N) algorithm can rapidly
compute millions of nodes to 16 digits of accuracy in under a second. For a discussion of the history of computing Gauss–Legendre
quadrature nodes and weights, see Townsend (2015b).
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likely that all DLT algorithms had a precomputational cost of at least O(N2), although this is rarely
discussed. It would be interesting to revisit these algorithms in the wake of these developments, but
such a detailed review is beyond the scope of this article.

The paper is structured as follows. In the next section we develop an O(N log N) algorithm for eval-
uating a Chebyshev series expansion at Legendre nodes (we refer to this as an NDCT). In Section 3
we combine this with the fast Chebyshev–Legendre transform from Hale & Townsend (2014) to
obtain an O(N(log N)2/ log log N) algorithm for computing the DLT. A similar algorithm for the IDLT
is described in Section 4. Throughout we use the following notation: a column vector with entries
v0, . . . , vN−1 is denoted by v, a row vector by vT, a diagonal matrix with entries v0, . . . , vN−1 by Dv, and
the N × N matrix with (j, k) entry Pk(xj) by PN (x).

2. An NDCT

Before considering the DLT (1.1), we describe an O(N log N) algorithm for evaluating a Chebyshev
expansion at Legendre nodes,

fk =
N−1∑
n=0

cnTn

(
xleg

k

)
, 0 � k � N − 1. (2.1)

This will become an important step in the DLT. Here, Tn(x) = cos(n cos−1 x) is the degree-n Chebyshev
polynomial of the first kind and the sums in (2.1) may be rewritten as

fk =
N−1∑
n=0

cn cos
(

nθ
leg
k

)
, 0 � k � N − 1, (2.2)

where xleg
k = cos

(
θ

leg
k

)
. If the Legendre nodes in (2.2) are replaced by the Chebyshev points of the first

kind, i.e.,

xcheb1
k = cos

(
θ

cheb1
k

)
= cos

(
(k + 1/2)π

N

)
, 0 � k � N − 1, (2.3)

then (2.1) can be computed in O(N log N) operations via a diagonally scaled discrete cosine transform
of type III (DCT-III) (Gentleman, 1972). Since (2.2) has a similar form to a DCT, but with nonequally
spaced samples, θ

leg
k , we refer to (2.1) as an NDCT.

Our algorithm to compute the NDCT is summarized as follows: consider the transformed Legendre
nodes, θ

leg
0 , . . . , θ leg

N−1, as a perturbation of an equally spaced grid, θ∗
0 , . . . , θ∗

N−1, i.e.,

θ
leg
k = θ∗

k + δθk , 0 � k � N − 1,

and then approximate each cos
(

nθ
leg
k

)
term in (2.2) by a truncated Taylor series expansion about θ∗

k . If

|δθk| is small (see Section 2.2), then only a few terms in the Taylor series expansion are required. More-
over, since the θ∗

0 , . . . , θ∗
N−1 are equally spaced, each term in the series can be computed in O(N log N)

operations via a DCT (see Section 2.3). The Legendre nodes, both xleg
0 , . . . , xleg

N−1 and θ
leg
0 , . . . , θ leg

N−1, can
be computed in O(N) operations using the algorithm described in Bogaert (2014).
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2.1 Computing an NDCT via a Taylor series expansion

As in Hale & Townsend (2014) we find it convenient to work in the θ = cos−1 x variable. There are
three reasons for this.

(1) The quantities θ
leg
k can be computed more accurately than xleg

k (Swarztrauber, 2003).

(2) The function cos−1 x is ill conditioned near x = ±1. In particular, since (d/dx) cos−1 x =
(1 − x2)−1/2, 1 − (xleg

0 )2 =O(N−2) and 1 −
(

xleg
N−1

)2
=O(N−2), one can expect rounding errors

that grow like O(N) when evaluating cos−1
(

xleg
0

)
and cos−1

(
xleg

N−1

)
. Furthermore, when eval-

uating TN−1

(
cos−1

(
xleg

0

))
and TN−1

(
cos−1

(
xleg

N−1

))
, this rounding error can increase to

O(N2).

(3) The Taylor series of Tn(cos(θ + δθ)) = cos(n(θ + δθ)) about θ involves simple trigonometric
terms and is more convenient to work with than the ultraspherical polynomials that arise in a
Taylor series of Tn(x + δx) about x.

The Taylor series expansion of Tn(cos(θ + δθ)) about θ ∈ [0, π ] can be expressed as

cos(n(θ + δθ)) =
∞∑

�=0

cos(�)(nθ)
(δθ)�

�!
=

∞∑
�=0

(−1)�(�+1)/2�Φ�(nθ)
(nδθ)�

�!
, (2.4)

where

Φ�(θ) =
{

cos(θ), � even,

sin(θ), � odd.

If |δθ | is small then a good approximation to Tn(cos(θ + δθ)) can be obtained by truncating this series
after just a handful of terms. The following lemma determines the accuracy we can expect from taking
the first L terms.

Lemma 2.1 For any L � 1 and n � 0,

RL,n,δθ := max
θ∈[0,π]

∣∣∣∣∣cos(n(θ + δθ)) −
L−1∑
�=0

cos(�)(nθ)
(δθ)�

�!

∣∣∣∣∣� (n|δθ |)L

L!
.

Proof. By the mean value form of the remainder we have

RL,n,δθ � max
θ̂∈[0,π]

∣∣∣cos(L)(nθ̂ )

∣∣∣ |δθ |L
L!

� (n|δθ |)L

L!
,

as required. �
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For 0 � k � N − 1, we write θ
leg
k = θ∗

k + δθk and substitute the first L terms of (2.4) into (2.1) to
obtain

fk,L,δθk =
N−1∑
n=0

cn

(
L−1∑
�=0

(−1)�(�+1)/2�Φ�(nθ∗
k )

(nδθk)
�

�!

)
(2.5)

=
L−1∑
�=0

(−1)�(�+1)/2� δθ�
k

�!

(
N−1∑
n=0

(n�cn)Φ�(nθ∗
k )

)
, (2.6)

where the second equality follows by interchanging the order of the summations.

Corollary 2.2 If fk is as in (2.1) and fk,L,δθk as in (2.5), then, for any L � 1,

|fk − fk,L,δθk | �
N−1∑
n=0

|cn|RL,n,δθk � (N |δθk|)L

L!
‖c‖1, 0 � k � N − 1.

Proof. This follows immediately from applying Lemma 2.1 to each of the terms in (2.1). �

Hence, if we approximate θ
leg
0 , . . . , θ leg

N−1 by points θ∗
0 , . . . , θ∗

N−1 such that

• max0�k�N−1 |θ leg
k − θ∗

k | is sufficiently small (see Section 2.2), and

• θ∗
0 , . . . , θ∗

N−1 is equally spaced,

then the number of terms, L, required to achieve an accuracy of |fk − fk,L,δθk | � ε‖c‖1 is small. Moreover,
the inner sums of (2.6) can be computed via discrete cosine and sine transforms (see Section 2.3), which
can be computed in O(N log N) via an FFT. This gives us the foundations of a fast algorithm.

2.2 Legendre nodes as a perturbation of a Chebyshev-like grid

The Chebyshev points of the first kind, xcheb1
0 , . . . , xcheb1

N−1 , are an approximation to xleg
0 , . . . , xleg

N−1, which

satisfy the requirements in the two bullet points above. In particular, letting θ
cheb1
k = cos−1

(
xcheb1

k

)
, one

can readily show that (Olver et al., 2010, (18.16.3))

|θ leg
k − θ

cheb1
k | � π

2(N + 1)
, 0 � k � N − 1.

However, this bound is a little weak. A better bound is given in Lemma 2.3.
Another possibility is to consider the leading-order term of the asymptotic expansion of Legendre

polynomials of large degree (Stieltjes, 1890):

PN (cos θ) ∼
√

4

π

Γ (N + 1)

Γ (N + 3/2)

cos((N + 1/2)θ − π/4)

(2 sin θ)1/2
, N → ∞.

The zeros of this leading term are

θ
cheb∗
k = (k + 3/4)π

N + 1/2
, 0 � k � N − 1,
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leg
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Fig. 2. The maximum distance between corresponding entries of θ leg and θcheb1 (upper solid line) and θ leg and θcheb∗ (lower solid
line) as a function of N . The dashed lines depict the bounds derived in Lemma 2.3, which appear to be tight.

which are also equally spaced and provide us with an approximation to Legendre nodes. In fact, multi-
plying the numerator and denominator by a factor of 2 and comparing with (2.3), we see that these points
correspond precisely to the odd terms (i.e., when the index k is odd) in the (2N + 1)-point Chebyshev
grid of the first kind.

The following lemma shows how closely θ
cheb∗
k and θ

cheb1
k approximate θ

leg
k , and Fig. 2 demonstrates

that the derived bounds are tight.

Lemma 2.3 Let θ
leg
0 , . . . , θ leg

N−1 denote the N roots of PN (cos θ). Then,

max
0�k�N−1

∣∣∣θ leg
k − θ

cheb∗
k

∣∣∣� 1

3π(2N + 1)
� 1

6πN
, (2.7)

and

max
0�k�N−1

∣∣∣θ leg
k − θ

cheb1
k

∣∣∣� 3π2 + 2

6π(2N + 1)
� 0.83845

N
. (2.8)

Proof. We first consider |θ leg
k − θ

cheb∗
k | and restrict our attention to 0 � k � �N/2� − 1. From Szegö

(1936, Theorem 6.3.2) we know that θ
cheb∗
k < θ

leg
k . Moreover, by Brass et al. (1996, Theorem 3.1 & eqn.

(3.2)) and cot(x) < 1/x, we have

θ
leg
k − θ

cheb∗
k � 1

2(2N + 1)2
cot θ cheb∗

k � 4N + 2

2(2N + 1)2(4k + 3)π
� 1

3(2N + 1)π
, 0 � k � �N/2� − 1.

By symmetry of the θ
leg
k and θ

cheb∗
k the same bound holds for k > �N/2� − 1 when we take the modulus.
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Table 1 The terms multiplying ‖c‖1 in (2.9) and (2.10) for 1 � L � 18. The shaded boxes show the
smallest value of L for which these fall below single and double precision

L 1 2 3 4 5 6

0.83845L/L! 8.4 × 10−1 3.5 × 10−1 9.8 × 10−2 2.1 × 10−2 3.5 × 10−3 4.8 × 10−4

((6π)LL!)−1 5.3 × 10−2 1.4 × 10−3 2.5 × 10−5 3.3 × 10−7 3.5 × 10−9 3.1 × 10−11

L 7 8 9 10 11 12

0.83845L/L! 5.8 × 10−5 6.1 × 10−6 5.6 × 10−7 4.7 × 10−8 3.6 × 10−9 2.5 × 10−10

((6π)LL!)−1 2.4 × 10−13 1.6 × 10−15 9.2 × 10−18 4.9 × 10−20 2.3 × 10−22 1.0 × 10−24

L 13 14 15 16 17 18

0.83845L/L! 1.6 × 10−11 9.7 × 10−13 5.4 × 10−14 2.9 × 10−15 1.4 × 10−16 6.6 × 10−18

((6π)LL!)−1 4.2 × 10−27 1.6 × 10−29 5.7 × 10−32 1.9 × 10−34 5.9 × 10−37 1.7 × 10−39

The bound on |θ leg
k − θ

cheb1
k | follows from the triangle inequality. That is, for 0 � k � N − 1, we

have

∣∣∣θ leg
k − θ

cheb1
k

∣∣∣� ∣∣∣θ leg
k − θ

cheb∗
k

∣∣∣+ ∣∣∣θ cheb1
k − θ

cheb∗
k

∣∣∣� 1

3π(2N + 1)
+ π(2k − N + 1)

2N(2N + 1)
.

Since k � N − 1, we obtain

∣∣∣θ leg
k − θ

cheb1
k

∣∣∣� 1

3π(2N + 1)
+ π(N − 1)

4N(N + 1/2)
� 3π2 + 2

6π(2N + 1)
� 0.83845

N
, 0 � k � N − 1.

�

Corollary 2.4 Choosing θ∗
k = θ

cheb1
k or θ∗

k = θ
cheb∗
k for 0 � k � N − 1 in (2.6), we have

max
0�k�N−1

|fk − f
k,L,δθ

cheb1
k

| � (0.83845)L

L!
‖c‖1 (2.9)

or

max
0�k�N−1

|fk − fk,L,δθ cheb∗
k

| � 1

(6π)LL!
‖c‖1, (2.10)

respectively.

Proof. The proof follows immediately from combining Corollary 2.2 and Lemma 2.3. �

We note that in (2.9) and (2.10) the terms multiplying ‖c‖1 are independent of N , and so the number
of terms required in (2.6) to obtain a given precision is bounded independently of N . Table 1 shows these
terms for 1 � L � 18. Double precision is obtained for L � 9 terms when θ∗

k = θ
cheb∗
k and for L � 17

terms when θ∗
k = θ

cheb1
k .
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2.3 Computing the discrete cosine and sine transforms

To complete our fast algorithm for the NDCT, we require a fast way to compute the sums contained
inside the parentheses of (2.6). In particular, writing (2.6) in vector form, we have

f
k,L

=
L−1∑
�=0
even

(−1)�(�+1)/2�

�!
D�

δθ DCT(c[�]) +
L−1∑
�=1
odd

(−1)�(�+1)/2�

�!
D�

δθDST(c[�]), (2.11)

where [c[�]]n = n�cn, n = 0, . . . , N − 1. When θ∗ = θ cheb1 the DCT and DST take the form

N−1∑
n=0

n�cn cos

(
n(k + 1/2)π

N

)
,

N−1∑
n=0

n�cn sin

(
n(k + 1/2)π

N

)
, 0 � k � N − 1,

which are readily related to the DCT-III and DST-III, respectively. When θ∗ = θ cheb∗ , they become

N−1∑
n=0

n�cn cos

(
n((2k + 1) + 1/2)π

2N + 1

)
,

N−1∑
n=0

n�cn sin

(
n((2k + 1) + 1/2)π

2N + 1

)
, 0 � k � N − 1,

which are equivalent to the odd terms of a DCT-III and DST-III of length 2N + 1. Hence, both may be
evaluated in O(N log N) operations.

Remark 2.5 Although, for an accuracy of double precision, the θ cheb∗ points require around half the
number of terms in the Taylor series compared with θ cheb1 (see Table 1), we see from above that each
term will be roughly twice as expensive to evaluate. Hence, we expect little difference between the two
approaches when there is a 16-digit accuracy goal.

Remark 2.6 The numerical results in this paper are computed in MATLAB. Although MATLAB uses
FFTW for FFT computations (Frigo & Johnson, 2005), it does not allow access to FFTW’s DCT and
DST routines (REDFT01 and RODFT01, respectively).2 Instead, we use the DCT and DST codes imple-
mented in Chebfun (Driscoll et al., 2014), which compute the DCT and DST via a complex-valued FFT
of double the length. Based on our experiments, we believe this to be a factor of 2–4 slower than calling
REDFT01 and RODFT01 directly.

Remark 2.7 This section described a Taylor-based NDCT, which is closely related to the Taylor-based
NFFT described by Kunis (2008). Alternative approaches based on oversampling and low-pass filters
are described in Dutt & Rokhlin (1993) and Potts (2003). Although for general point distributions the
oversampled NFFT and NDCT are considered faster than the Taylor-based approaches (Ware, 1998) we
choose to use a Taylor-based NDCT because (a) it is simple and (b) Lemma 2.3 provides a precise bound
on the number of terms required in the expansion for a given accuracy (see Table 1). Since the required
number of terms is small, we expect the Taylor-based method to be competitive in this particular case.

2 The MATLAB signal processing toolbox has a dct() function, but this is computed via an FFT of double the length.
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Fig. 3. Errors in computing the NDCT of vectors with various rates of decay using the direct method (left) and the new FFT-based
approach with θ∗ = θcheb1 (right). In both cases a vector of length N is created using randn(N,1) in MATLAB and then scaled
so that the nth entry is O(n0), O(n−0.5), O(n−1) and O(n−1.5), giving the four curves in each panel. The dashed lines depict
heuristic observations of the error growth in each case. The log factors may seem somewhat arbitrary, but the lines give a much
better fit to the data when these are included.

2.4 Direct approach

To test the fast algorithm above, we construct TN
(
xleg
)

via the three-term recurrence relation:

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x), n � 1.

Although this approach requires O(N2) operations to compute TN
(
xleg
)

c, the memory cost can easily
be reduced to O(N) by computing the matrix–vector product as a recurrence. Hereinafter, we refer to
this as the direct approach.

We note that one could instead compute the NDCT using the closed-form expression of Tn(cos θ)

to construct TN
(
xleg
)= cos

(
θ leg[0, 1, . . . , N − 1]

)
and then evaluate the matrix–vector product

f = TN
(
xleg
)

c. However, such a closed form is not available when we come to compute PN
(
xleg
)

in the next section.

2.5 Numerical results for the NDCT

All the numerical results were performed on a 3.40 GHz Intel Core i7-2600 PC with MATLAB 2015a
in Ubuntu Linux. The vector of transformed nodes θ leg is computed with the legpts () command in
Chebfun (Driscoll et al., 2014, v5.2), which uses Bogaert’s algorithm from Bogaert (2014). As discussed
in Remark 2.6, DCTs and DSTs are computed using the chebfun. dct () and chebfun. dst () routines.
MATLAB codes for reproducing all of the results contained within this paper are available online (Hale
& Townsend, 2015).

As a first test we take randomly distributed vectors c with various rates of decay and compare
the accuracy of both the direct and FFT-based approaches against an extended precision computation
(Fig. 3).3 The results for θ cheb1 and θ cheb∗ in the FFT-based approach are virtually indistinguishable so
we show only the former. We find that the FFT-based approaches are more accurate than the direct

3 In particular, the vector corresponding to, say, N = 50 with O(n−0.5) decay can be reproduced exactly by the MATLAB code
rng(0,‘twister’); c = rand(50,1)./sqrt(1:50).’;.
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Fig. 4. Time to compute an NDCT of various lengths using the direct approach (squares) and FFT-based approaches from Section 2
with xcheb1 (triangles) and xcheb∗ (circles). For larger values of N the two FFT-based approaches require a comparable time, and
the crossover with the direct approach occurs at around N = 1, 000. We believe the jump in the xcheb∗ time (circles) at around
N = 650 is caused by a switch in algorithmic details of the FFT routine.

approach, despite our algorithm involving many significant approximations. In many applications the
Chebyshev expansion in (2.1) is derived by an approximation of a smooth function. In this setting, if the
function is Hölder continuous with α > 1/2, we observe that the FFT-based algorithm has essentially
no error growth with N .

Our second test investigates the time taken to compute a real-valued NDCT of length N . Figure 4
compares the direct approach (squares) and the FFT-based approach with θ cheb1 (triangles) and θ cheb∗

(circles), in the range 100 � N � 10,000. The variation of computational times between consecutive
values of N is typical of FFT-based algorithms, where the theoretical cost of the FFT as well as the
precise algorithm employed by FFTW depends on the prime factorization of N . The triangles and circles
lie on a piecewise linear least squares fit to the computational timings, to suggest some kind of ‘average’
time for nearby values of N . The variation also makes it difficult to say when the FFT-based algorithm
becomes more efficient than the direct approach, but it occurs around N = 1, 000.

3. The discrete Legendre transform

Our procedure for computing the DLT in (1.1) splits naturally into two stages. The first deals with the
nonuniform frequency present in Pn(cos θ) and converts the transform to one involving Tn(cos θ) with

uniform frequency in θ . The second stage deals with the nonuniform grid cos
(
θ

leg
0

)
, . . . , cos

(
θ

leg
N−1

)
and is the NDCT from the previous section.

Denote by M the N × N upper-triangular matrix given by

Mkn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

π

Γ (n/2 + 1/2)

Γ (n/2 + 1)
, 0 = k � n � N − 1, n even,

2

π

Γ ((n − k)/2 + 1/2)

Γ ((n + k)/2 + 1)
, 0 < k � n � N − 1, k + n even,

0 otherwise.
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Fig. 5. Errors in computing the DLT of vectors with various rates of decay using the direct approach (left) and the FFT-based
approach (right). In both cases, a vector of length N is created using randn(N,1) in MATLAB and then scaled so that the
nth entry is O(n0), O(n−0.5), O(n−1) and O(n−1.5), giving the four curves in each panel. The dashed lines depict heuristic
observations of the error growth in each case.

If c is the vector of Legendre coefficients in (1.1) and ĉ = M c, then we have (Alpert & Rokhlin, 1991)

fk =
N−1∑
n=0

cnPn

(
xleg

k

)
=

N−1∑
n=0

ĉnTn

(
xleg

k

)
, 0 � k � N − 1. (3.1)

Now, the summation on the right-hand side takes the form of the NDCT (2.1) and we may use the
algorithm described in Section 2.3 to compute f in O(N log N) operations.

To compute ĉ directly, i.e., via the matrix–vector product M c, requires O(N2) operations. Instead,
we note that the transform ĉ = M c can be computed in O(N(log N)2/ log log N) operations using the
FFT-based algorithm described in Hale & Townsend (2014) or by the fast multipole-based approach in
Alpert & Rokhlin (1991). In this paper, we use the algorithm in Hale & Townsend (2014) because it has
no precomputational cost and so allows for adaptive discretizations.

Another convenient property of the transforms in this paper is that there is an asymptotically optimal
selection of algorithmic parameters for any working tolerance. In the NDCT, the number of terms in the
Taylor series expansion can be precisely determined based on the working tolerance. We would like
this to also hold for the O(N(log N)2/ log log N) Chebyshev–Legendre transform described in Hale &
Townsend (2014). We remark that though the paper considered only a working tolerance of machine
precision throughout, the algorithmic parameters were derived and determined in terms of ε > 0. We
slightly modified our implementation to exploit arbitrary working tolerances.

3.1 Numerical results for the discrete Legendre transform

First, we take random vectors c with normally distributed entries and then scale them to have algebraic
rates of decay O(n0), O(n−0.5), O(n−1) and O(n−1.5), as in Section 2.5. The accuracy of both the direct
and FFT-based approaches is compared against an extended precision computation. The results are
shown in Fig. 5 and one can see that the errors for the direct and FFT-based approach are comparable.
In most practical applications the Legendre coefficients are associated with a smooth function, so they
decay at least algebraically.
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Fig. 6. Time taken to compute the DLT of length N using the direct approach (squares) and FFT-based approach (triangles). Here,
we choose 1,000 logarithmically spaced values of N in the range 103–105. The larger squares and rectangles are every 50th one
of these. We omit the results for the FFT-based approach using the points xcheb∗ as they are indistinguishable from those of xcheb1 .

While we achieve a similar error to the direct approach, our FFT-based approach has a lower com-
plexity and is more computationally efficient for large N . Figure 6 shows a comparison of the com-
putational times for the direct and FFT-based approach. When comparing with Fig. 4, we see that the
computational time for the DLT is dominated by the leg2cheb transformation. For an accuracy goal of
double precision, the crossover between the direct and FFT-based approach is approximately N = 5,000.

4. The inverse discrete Legendre transform

We now turn to the IDLT, which can be seen as taking values of a function on an N-point Legendre
grid and returning the corresponding Legendre coefficients of the degree-(N − 1) polynomial inter-
polant. The basis of the algorithm we propose is analogous to the forward transform and has the
same O(N(log N)2/ log log N) complexity. Unlike most NFFT algorithms which resort to an iterative
approach for computing the inverse transform (Dutt & Rokhlin, 1993; Anderson & Dahleh, 1996), here
we take advantage of the orthogonality of Legendre polynomials, and in particular the exactness of
Gauss–Legendre quadrature, to derive a direct method for the IDLT.

It is convenient to work with matrix notation rather than summations, and we denote the N × N

matrix with (j, k) entries Pk

(
xleg

j

)
as PN

(
xleg
)

and the N × N matrix with (j, k) entry Tk

(
xleg

j

)
as

TN
(
xleg
)
. Using the orthogonality of Legendre polynomials and the exactness of Gauss–Legendre

quadrature, the IDLT (1.2) can then be conveniently written as

c = P−1
N

(
xleg
)

f = DsPT
N

(
xleg
)

Dwleg f , (4.1)

where s = (‖P0‖−2
2 , . . . , ‖PN−1‖−2

2

)T
and wleg is the vector of Gauss–Legendre quadrature weights.

From (3.1) we know that, for any vector c, PN
(
xleg
)

c = TN
(
xleg
)

ĉ = TN
(
xleg
)

M c, and hence we have
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Fig. 7. Left: errors in computing the IDLT of vectors using the direct method and the FFT-based approach. A vector of length N
is created using randn(N,1) in MATLAB with the dashed line showing the observed growth of the maximum absolute error.
Right: time taken to compute the IDLT of length N using the direct approach (squares) and FFT-based approach (triangles).

the matrix decomposition PN
(
xleg
)= TN

(
xleg
)

M . Substituting this into (4.1) we obtain

c = DsM
TTT

N

(
xleg
)

Dwf .

Thus, c can also be computed in O(N(log N)2/ log log N) operations for the following reasons.

(1) Dw and Ds are diagonal matrices, and so can be readily be applied to a vector in O(N) operations.

(2) TT
N

(
xleg
)

is precisely the transpose of the NDCT in Section 2. Since the transpose of the DCTs
and DSTs in Section 2.3 can themselves be expressed in terms of DCTs and DSTs (of type II),
TT

N

(
xleg
)

can be approximated in O(N log N) operations by taking the transpose of (2.11).

(3) The matrix–vector product with M T is closely related to the Chebyshev–Legendre transform and
can be computed in O(N(log N)2/ log log N) operations by a slight modification of the algorithm
in Hale & Townsend (2014). (Alternatively, one could use the ideas in Alpert & Rokhlin, 1991.)

4.1 Numerical results for the inverse discrete Legendre transform

For the inverse transform, the direct approach requires O(N2) operations to compute the IDLT of
length N , rather than the naive O(N3) standard inversion algorithm. This is because the direct approach
we have implemented exploits the discrete orthogonality relation that holds for Legendre polynomi-
als (see (4.1)). The matrix–vector product with PT

N

(
xleg
)

in (4.1) is computed by using the three-term
recurrence relations satisfied by Legendre polynomials, except now along rows instead of columns.

For our first numerical experiment we take randomly generated vectors with normally distributed
entries and compare the accuracy of both the direct and FFT-based approach against an extended pre-
cision computation (see Fig. 7, left). Unlike in Sections 2.5 and 3.1 we do not consider decay in these
vectors, as they will typically correspond to function values in space where there is no reason to expect
decay. We find that the errors incurred by our FFT-based IDLT are consistent with the direct approach.

In Fig. 7 (right) we show the execution time for computing the IDLT with the direct approach
(squares) and FFT-based approach (triangles). As with the DLT, our IDLT algorithm is more computa-
tionally efficient than the direct approach when N � 5,000.
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5. Conclusion

We have presented fast and simple algorithms for the discrete Legendre transform and its inverse, which
rely on an NDCT and the Chebyshev–Legendre transform. Both components are based on the FFT
and have no precomputational cost. For an N-point transform both algorithms have a complexity of
O(N(log N)2/ log log N) operations and are faster than the direct approach when N � 5,000. MAT-
LAB code to compute the transformations (and all the results contained in this paper) are available
online (Hale & Townsend, 2015). The codes are also accessible in Chebfun (Driscoll et al., 2014) via
chebfun. dlt () and chebfun. idlt () , respectively. As part of the analysis of the algorithm we derived a
bound on the distance between associated points in Chebyshev and Legendre grids of the same size (see
Lemma 2.3), which we believe to be tighter than any similar bounds appearing in the literature.
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