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Abstract. A fast, simple, and numerically stable transform for converting between Legendre and
Chebyshev coefficients of a degree N polynomial in O(N(log N)2/loglog N) operations is derived.
The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre
polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can
then be evaluated by using the discrete cosine transform. Numerical results are provided to demon-
strate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at
an N + 1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre
coefficients and values on a Chebyshev grid.
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1. Introduction. Expansions of functions as finite series of orthogonal poly-
nomials have applications throughout scientific computing, engineering, and physics
[4, 8, 29]. Expansions in Chebyshev polynomials,

N
(1.1) pn(x) = Z <cheb T (), =€ [-1,1],
n=0

where T),(x) = cos(ncos™!(x)), are often used because of their near-optimal approxi-
mation properties and associated fast algorithms [18, 35]. However, in some situations
Legendre expansions,

N
(1.2) py() =D 9P (), = e[-1,1],
n=0

where P, () is the degree n Legendre polynomial, are preferred due to their orthog-
onality in the standard L? inner product, more rapidly decaying Cauchy transform
[21], or connection to spherical harmonics [28].

Unfortunately, fast algorithms are not as readily available for computing with
Legendre expansions, and hence a fast transform to convert between Legendre and
Chebyshev coefficients is desirable. In this paper we describe a fast, simple, and
stable transform that converts between the coefficients ci?, ..., cx? in (1.2) and the
coefficients c§"?, ..., c§ in (1.1) in O(N(log N)?/loglog N) operations:
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forward transform

! !
ey Cn’ O(N(ogN)?/loglog N)  c§heb .. cghed,

inverse transform

While there are a number of existing fast algorithms for computing such transforms,
many of these require hierarchical data structures and expensive initialization proce-
dures [2, 27], need an underlying function to evaluate [7, 17], or suffer from stability
problems [20].

The algorithm we describe is based on Stieltjes’ long-established asymptotic for-
mula for Legendre polynomials [31] and can be seen as a numerically stable modifica-
tion of the approach by Mori, Suda, and Sugihara [20]. As we shall explain, it can be
interpreted as approximating the Legendre—Vandermonde-like matrix by a weighted
linear combination of Chebyshev—Vandermonde-like matrices, whose action on vectors
can be efficiently computed using the discrete cosine transform (DCT).

The outline of this paper is as follows. In the next section we discuss existing
fast algorithms for the Chebyshev—Legendre transform and justify the need for a
new approach. In section 3 we discuss the forward transform, first introducing the
asymptotic formula of Stieltjes [31] and describing the numerically unstable algorithm
of Mori, Suda, and Sugihara [20], before advocating a novel modification that leads
to a fast and stable algorithm. In section 4 we describe a similar new fast algorithm
for the inverse transform, and in section 5 we present numerical results for both
algorithms. Finally, in section 6 we discuss applications and future work for related
fast transforms.

The code used for all the numerical results in this paper is publicly available from
[15]. It is also available as part of the Chebfun software system [36].

2. Existing methods. The problem of computing coefficients in a Legendre ex-
pansion has received considerable research attention since the 1970s [11, 26]. These
initial approaches required O(N?) operations to compute the transform, and to the
authors’ knowledge the first algorithm for computing the coefficients of a Legendre
expansion in less than O(N?) operations is due to Orszag [25] in 1986. Later, in 1991,
Alpert and Rokhlin [2] described an algorithm based on multipole-like ideas, requir-
ing just O(N) operations. In 1994, Driscoll and Healy developed an O(N (log N)?)
algorithm, which could be used to compute the spherical harmonic transform of band-
limited functions on the 2-sphere [9]. Since then many other fast algorithms have been
proposed [7, 20, 27, 38]. Figure 2.1 summarizes the main algorithms, which are briefly
described below.

2.1. Approaches using asymptotic expansions. Orzsag [25], in 1986, de-
scribed a fast algorithm for eigenfunction transforms, which can be used for the
computation of Legendre coefficients. The algorithm is based on a first-order WKB
expansion of Legendre polynomials, but it is not considered useful in practice as the
expansion converges too slowly. The algorithm we present for computing the forward
transform is similar to Orszag’s approach but is improved in two crucial ways: (1)
we use a different asymptotic formula for P,(x) due to Stieltjes that converges more
rapidly [31, 34]; and (2) we use an accompanying explicit error formula to derive the
complexity and determine certain algorithmic constants of the transform.

We are not the first to use Stieltjes’ asymptotic formula for computing the fast
transform, as it was employed by Mori, Suda, and Sugihara [20] in 1999 to derive an al-
gorithm requiring O(N log N) operations. The algorithm described in [20] is fast and
accurate for small N, but as N increases it becomes numerically unstable in floating
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fast cosine transform [1]

O (NlogN)

Potts et al. [27]

Values at O (N(log N)?) } :
ChaegeZhaév ( Legendre Alpert & Rokhlin [2] Chebyshev
pOi}IlltS - coefficients J O(N) coefficients
Mori et al. [20]
O (NlogN)
Iserles [17] Tygert [38]
Values in the | O (N logN) O(NlogN) Values at

Legendre
points

complex plane

Fic. 2.1. Existing fast algorithms related to Chebyshev—Legendre transforms.

point arithmetic. Suda, Mori, and Sugihara were aware of the numerical instability in
their algorithm and in 2002 began preparing a manuscript to fix the numerical issues.
However, that work was not finished and they no longer intend to publish [32]. Fur-
thermore, even with the unpublished modification (as noted in the manuscript), their
algorithm is still unstable for large N. In this paper we present a further modification
that is numerically stable for all N. In particular, in section 3 we adapt the algorithm
in [20] to derive a stable transform requiring O(N (log N)?/loglog N) operations that
can transform between 1 million Legendre and Chebyshev coefficients, or more.

2.2. The fast multipole method. The fast multipole-like approach described
by Alpert and Rohklin [2] transforms between Legendre and Chebyshev coefficients
in O(N) operations. The cost of the algorithm depends on the working precision,
and for double precision arithmetic they observe that after the initialization phase
it is about 5.5 times the cost of a single fast Fourier transform (FFT) of the same
length [2]. Although this approach is often considered state of the art, the algorithm
is not widely used in practice as the initialization phase can be expensive and the
hierarchical data structures required make it difficult to implement efficiently. As
noted in [37], the algorithmic ideas described by Yarvin and Rokhlin in [41] are useful
for converting between Chebyshev and Legendre values, and these techniques make the
transform easier to implement with O(N) complexity and a cheaper initialization cost.
Moreover, the algorithm in [24] can be used for the Chebyshev—Legendre transform,
though the main advantage of their approach is its generality to the Fourier—Bessel
transform and others, rather than its efficiency for the transform of interest. The
algorithms for the forward and inverse transforms presented in this paper do not
require an initialization phase and are sufficiently simple that they can be efficiently
implemented in about 100 lines of MATLAB code (see [15, 36]).

2.3. Divide-and-conquer approaches. Potts, Steidl, and Tasche described in
1998 a fast algorithm that transforms between function values at Chebyshev points
and Legendre coefficients [27]. The algorithm uses a divide-and-conquer approach
and hierarchical data structures to apply the matrix-vector product involving the
Legendre—Vandermonde-like matrix

Pr (i) = [Po(aft) | -+ | Py (z5)]

in O(N (log N)?) operations, where Py, ..., Py_1 are the first N Legendre polynomials
and g‘j\?Eb denotes the vector of N Chebyshev points in decreasing order.
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Tygert [38], in 2010, described a similar algorithm, noting that the Legendre—
Vandermonde-like matrix can be decomposed as PN(gl]\c}g ) = D,UDjs, where gé\e,g
is the vector of N Gauss-Legendre points, D,, is the diagonal matrix of Gauss—
Legendre quadrature weights, D; is the diagonal matrix of orthonormalization factors
for Legendre polynomials, and U is an orthogonal matrix. Tygert then uses the fact
that the orthogonal matrix U can be applied in O (N log N) operations since the
columns are the eigenvectors of a symmetric tridiagonal matrix [13]. The approach
proposed by Tygert is more general than just a fast Legendre transform and he notes
that specialized algorithms are likely to be more efficient.

2.4. Function dependent approaches. In 2011, Iserles [17] described an al-
gorithm to compute the fast Legendre coefficients by sampling a function at points
lying on a certain Bernstein ellipse in the complex plane. The algorithm requires
O(N log N) operations and is much simpler to implement than other approaches men-
tioned thus far. However, the size of the required Bernstein ellipse depends on the
region of analyticity of f, making the algorithm difficult to use in a black box manner.
Furthermore, it seems that in practice this algorithm suffers from numerical instabil-
ity for large N (N > 512), and quadratic precision is required in the computations to
get even double or single precision accuracy in the results.

More recently, De Micheli and Viano in [7] described a fast algorithm based on
integral transforms, which also depends on the smoothness of the prescribed function.
The algorithm we derive does not depend on the smoothness of the function and is
applicable to any vector of real or complex coefficients.

3. The forward transform: Legendre to Chebyshev. For notational con-
venience we express (1.1) and (1.2) in the form

px (@) = Tr(2)eif” = Pre(a)ey?,
where z is an independent variable and
(3.1) Tn(z) =[To(x)| ... |Tn(2)],  Pn(z)=[Po(z)] ... |Pn(z)]

are Chebyshev and Legendre quasimatrices,! i.e., the oox (N+1) matrices that have in
their nth column the degree n — 1 Chebyshev and Legendre polynomial, respectively.
If -1<zy <---<uzg<1are N+ 1 distinct points in [—1,1] (indexed in reverse
order to simplify later notation) and 2y = {z;},- <, then

pr(zy) = Tn(zy)el® = Palzy )y’
For brevity, we refer to the Vandermonde-like matrices Tn(zy) and Pn(z ) as the
Chebyshev—Vandermonde and Legendre—Vandermonde matrices, respectively. Now,

since polynomial interpolants at distinct points are unique, Tn(z ) and Pn(z ) are
invertible, and we may write

et = Ty(ay) ' Pr(ay)cv’.

For a general vector of distinct points z, a naive algorithm requires O(N?)
operations for a matrix-vector product with Pn(x ), and O(N?) operations to apply

IThe term quasimatriz was coined by Stewart in [30] to describe “matrices” with columns con-
sisting of functions.
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Tn(zy) ! to a vector. However, if zy = 2§, i.e., the vector of N 4+ 1 Chebyshev—
Lobatto points,

(3.2) Mt = cos(kn/N), k=0,...,N,

then Tn (z57?) is the matrix representing a DCT? and can be applied and inverted in
O(N log N) operations [1, 12]. Applying Pn(z$"?) to a vector in fewer than O(N?)
operations is less straightforward, but in the following section we describe how this
can be achieved by employing a well-known asymptotic formula.

As an aside, we note that if TN@%wb)_l is not applied, }:dll)en PN(g%wb)gé\e,g =
cne

pn (2§2e?) is simply pn (z) evaluated on the Chebyshev grid z§/¢*, which is useful for

the fast evaluation of a Legendre expansion and spectral collocation methods [6].

3.1. An asymptotic formula for Legendre polynomials. In 1890, Stieltjes
[31] derived the following asymptotic formula for Legendre polynomials as n — oo:

M—-1

(3.3) P,(cosf) = C, Z hin,n

m=0

cos((m +n+ %)9 —(m+ %)g)
(2sin )™ /2

+ RM,n(e)a

where 6 = coszx for 6§ € (0,7), and

_Aypd _ JATm+D
(3.4) O"_Wj_l_llj+1/2_\/;r(n+3/2)’

(3.5) h { o m =0,
. m,n — m ('71/2)2
7% seersviy: m > 0.

Szegd, in his classic book on orthogonal polynomials [34], showed that the error term
can be bounded by

2
(3.6) |Rarn (0)] < Crharon 2ame)
This upper bound is sharp and a good approximate lower bound is half the up-
per bound, since |Ras.,, (0)| is less than twice the first neglected term in (3.3) [34].
The bound on Ras,(0) shows that (3.3) converges to P,(cosf) as M — oo for
0 € (7/6,57/6), i.e., for 6 such that |2sinf| < 1. However, as suggested by Szeg6 in
[34] and demonstrated in [5, 16], for finite values of M this asymptotic formula can
still be an excellent approximation for 6 € (7/6,57/6). In practice, if n is sufficiently
large, (3.3) can be used to approximate P, (cosf) to double precision for almost all
0 € (0,7). The exact region in the (n,d)-plane in which M terms of (3.3) approxi-
mates P, (cos ) to a prescribed tolerance can be determined from (3.6), as we derive
later in (3.14).
To make (3.3) amenable to evaluation using the DCT, we first note that (m+n+

)0 — (m+3) =nb — (m+ £)(Z — 6) and rewrite the trigonometric term in (3.3) as

cos((m+n+3)0 — (m+3)5) = cos(nd — (m+ 3)(5 —0)).

2In this paper we use the acronym DCT to refer to the discrete cosine transform of type I (DCT-

I [40]) with the first and last columns of the DCT-I matrix scaled, so that it equals the matrix

TN (z§Pe?). Moreover, the matrix Tn(z§P¢?) is symmetric, i.e., Tn(z§he®)T = Tn(z§PeP).
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Applying a standard trigonometric identity to cos(A — B) we find
cos(nf — (m+ 1)(3 —0)) = sin(nd) sin((m + 3)(5 — 0))
+ cos(nf) cos((m + 3)(% —0)) .

Noting that T),(cosf) = cos(nd) and U,_1(cos#) = sin(nh)/sinf are Chebyshev
polynomials of the first and second kind, respectively, we have

(3.7) cos(nf — (m+ 1)(5 — 0)) = Up—1(cos6) sin((m + 3)(5 — 6)) sinf
+ T (cosf) cos((m+ 1) (5 —0)).

Finally, substituting (3.7) back into (3.3), we find the asymptotic formula (3.3) can
be expressed as a weighted linear combination of Chebyshev polynomials

(3.8)  Pu(cosf) =C, thn U (0)Up—1(c08 0) + v (0) Ty, (cos 0)) + Ry (6),

where
sin((m + 3)(3 — 0)) sind
(2sin )™ /2

cos((m + %)(g — 0))
(2sin 0)™ /2

(3.9)  un() = , vm(0) =
Now, since T}, (cos ) and U,,—1(cos ) are the only terms in (3.8) that depend on both
n and 0, the quasimatrix Pn(z) from (3.1) can be expressed in the following compact
form:

(3.10)
M-1
N (cos ) Z D, )0 Un—1(cos0)] 4 D, 9yTn(cos)) Dop, + Rar(6),

m=0

where z = cos @, D, (0) and D,, (0) are the diagonal operators with w,,(6) and v,,(6)
from (3.9) on the diagonal, D¢y, is the diagonal matrix of the pointwise product of
(3.4) and (3.5) for n=0,..., N, and Ry (0) = [Rar,0(0) | ... | Ras,n ()]

Substituting z = xf\}}eb = cos(05°") means that Un_1(25"*) and T (z5)
are essentially discrete cosine/sine transformation matrices, which can be applied
to a vector in O(N log N) operations using the DCT. Since Pn(z§!") is simply a
diagonally weighted linear combination of these matrices, the matrix-vector product
P (2§)c§le in (3.10) can be evaluated in O(M N log N) operations using (3.10)
with an error of Ry (85°)c5eb.

3.2. Partitioning the Legendre—Vandermonde matrix for the forward
transform. First, we take the unusual step of describing an unstable algorithm by
Mori, Suda, and Sugihara [20] for the forward transform that we do not advocate.
However, by describing this algorithm now we motivate and set the scene for its stable
variant (see section 3.3).

This unstable algorithm computes PN(Q%LGZ)) W/ by partitioning P (z$F*) into
three matrices,

(3.11) PN(Q%LGZJ) PREC( cheb) 4 PDCT( cheb) 4 PCOR( %Leb)

)

as shown in Figure 3.1 (left). Making use of DCTs, the matrix PRCT (2§!¢?) is applied
to a vector via the asymptotic formula (3.10), and in this process an unacceptably
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Chebyshev points (in )
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Fic. 3.1. Left: The partition of the matriz PN(Q%WI’) employed in the unstable algorithm. The

dashed line indicates the boundary of the region in which the asymptotic formula can be employed

without correction, and the gray region indicates the monzero entries of the matriz P%Ec(gﬁeb)‘

Right: The error curves |Ryrpn(0)| = € for M =5,6,7,15 and N = 1,000.

large error for certain (n,#) can be committed which must be corrected by a ma-
trix PROR(z5#?). The matrix PREC (244’ contains all the columns and rows of
P (2§?) that do not intersect the error curve |Ras,(0)| = €, that is,

PN(E%LEI))U? 1< mln(Z,N -1+ 1) < jM7

C/..cheb .
PR (@) = § Pa(@)i, 1< <nar,
0, otherwise.
Here, nys is the number of Legendre polynomials, P,..., P,,,, that cannot be ap-

proximated using the asymptotic formula (3.3) to a precision € at § = /2 (x = 0).
In other words, |Rpr,n(7/2)| < € for all n > nyps. It can be shown, using (3.6) and its
approximate sharpness, that for n > M,

I (4I‘(M +1/2)? n_M_1/2> ’

> - =
(812) Brtin (/2| 2 Cnlint 357772 LM + 1) 2Mi3

where the last equality is the leading term in a series expansion of Rjas,(7/2) for
n > M. Solving (3.12) we obtain

|1 ®Pr (M + 1) "
(3.13) = {5 <G4F(M7+1/2)2> J

and Table 3.1 gives some values of nys for 3 < M < 15. More generally, we can use
(3.12) to derive the following error curve:

(3.14) |[Ryn(0) =€ = n=mny/sinb.

The curves clearly depend on M, and Figure 3.1 (right) depicts those for M =
5,7,10,15 and N = 1,000. Similar figures appear in [20].

Jm gives the number of values Pn(zo),...,Pn(z;,,—1) that cannot be approx-
imated by the asymptotic formula (3.3) to a tolerance of e using M terms in the
asymptotic formula. Thus, using (3.14), jas is the number of points in the interval
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TABLE 3.1
Algorithmic constants for 3 < M < 15 and € = 2.2 x 10716 in the regime of N > ny and
n> M. P,,,11(x) is the lowest degree Legendre polynomial that is evaluated at © = 0 to machine
precision using M terms in the asymptotic formula, and jyr is such that Pn(x;) is evaluated to
machine precision for any jar < i < N — jar.

M 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

ny | 16,072 | 2,053 | 583 | 252 | 139 | 90 | 65 | 50 | 41 | 35 | 30 | 27 | 25
Jm 5,000 658 185 | 80 44 | 28 | 20 | 15 | 13 | 11 9 8 7

0<6<sin? (nWM)

Since cos™!(zp),...,cos7!(x;,,) are equally spaced with spacing 7/(N + 1) in the
f-variable we have
N +1
(3.15) M = \‘ + sin~! (n—M)J
7 N

Moreover, sin~!(z) ~ = for |z| < 1, and hence for N > nys the parameter jy is
essentially independent of N. Table 3.1 gives the values of jjs for 3 < M < 15.

Note that (3.13) and (3.15) for the algorithmic constants nys and jjs assume that
n > M and N > njs, respectively. In fact, the analysis here is intended not to be
overly rigorous or technical but just to give estimates of the error curve, nj,s, and
jnm- A more technical analysis can be performed by taking more care when certain
series expansions are employed, but this does not significantly change the practical
properties of the algorithm.

cheb)

We compute the resulting vector Pn (2§ 7 by applying the three matrices

n (3.11) separately. The matrix-vector product PREC( cheb)e l]f}g can be computed in
O(N) operations because the matrix PRFC(2/?) has fewer than (2jy + na )N =
O(N) nonzero entries. These entries cannot be computed via the asymptotic formula
(3.3) because for these (n,8) we have |Rps,(6)] > €. Instead, we use the well-known

three-term recurrence relation satisfied by Legendre polynomials [22]:

)xPn(x)—(l— ! )Pnl(x), n>1.

n+1

(3.16) Poii(z) = (2 S

PREC( cheb) PREC( cheb)

In this way, lN is computed without explicitly forming

For the matrix-vector product PRET (z5r)ckd we write PROT (z5:¢%) as the
weighted sum of Chebyshev—Vandermonde matrices given in (3.10). However, since
the first nas columns and first and last jys rows of PRET(27Y) are zero we must
restrict the DCTs when applying the matrices Un_1(2§'®*) and Tn(z§**). One
can think of this as pre- and postmultiplying the Chebyshev—Vandermonde matrices
by identity matrices with the first and last jj; and first nas entries on the diagonal
zeroed, respectively. As before, each multiplication by the Chebyshev—Vandermonde
matrices can be computed in O(N log N) operations using the DCT.

Unfortunately, in computing PDCT( %wb) l]f}g we have employed the asymptotic
formula in a region where |Ras,(0)| > €, and we must correct for this. To do so, we
construct a correction matrix PSOR (z Ch@b) (see Figure 3.1 (left)), with each nonzero
entry equal to the true value of a Legendre polynomial minus the erroneous evaluation
via the asymptotic formula (3.3). Thus, to compute each entry of P{OF (2§¢?) we
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Absolute error
Execution time (sec)

Fic. 3.2. Left: The maximum error in the computed coefficients g%mb for various M. For every

M > 1 there is an integer Nmax such that the algorithm is numerically unstable for n > Nmax. This
situation can be remedied using the algorithm described in section 3.3. Right: The execution times
for the same values of M and 10° < N < 10°. By selecting a small value of M one can ensure that
the instability occurs only at a large N, but then the algorithm is much less efficient.

evaluate the Legendre polynomial using the three-term recurrence (3.16) and subtract
the value obtained from the asymptotic formula in the form (3.3). Fortunately, as
can be derived by the analysis in [20], the matrix P{OR (257%) contains O(N log N)
nonzero entries, and thus the correction vector PgOR(gf\}}eb)gé\e,g can be computed in
O(N log N) operations. Since each of the matrices on the right-hand side of (3.2) can
be applied in O(N log N) operations, so can P (z5?), and hence the entire forward
transformation.

The major problem with this algorithm, as described, is that for any M the
transform becomes numerically unstable for sufficiently large N. The reason for this is
cancellation error in floating point arithmetic. For large N the asymptotic formula can
erroneously evaluate to arbitrarily large values outside the dashed line in Figure 3.1
(left), which means the entries in PROR (2§*?) lose all precision. This effect appears
in practice, and in Figure 3.2 (left) we show the absolute error in the computed
Chebyshev coefficients for various values of M between 5 and 20 with 1,000 < N <
10,000. It is the cancellation error in computing the entries of P{OR (2§2¢?) that makes
the algorithm numerically unstable and therefore, for large N, it is not as useful as
one might hope for computing the forward transform.

3.3. Block partitioning for numerical stability. Now we describe the algo-
rithm that we do advocate for the forward transform based on a different partitioning
of the Legendre—Vandermonde matrix PN(gf\’}Eb). The algorithm is numerically sta-
ble and computes the vector TN(g%lEb)*lPN(g%Wb)gé\e,g in O(N(log N)?/loglog N)
operations.

We partition the matrix Pn(z$?) into K + 1 submatrices, where K grows like
O(log N/loglog N), in such a way that each submatrix can be applied to the vector

9 in at most O(N log N) operations. In particular, we partition Pn(z5") as

K
cne cne k cne
(3.17) P (z50Y) = PREC (25<%) + 7 P (20,
k=1

where, for kK =1,..., K, we have
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() yehedy _ Pn(z§)ij, ix << N —ip, ofN<j<ab N,
N SN 0 otherwise,

= 0O(1/log N) (see (3.19) for the precise definition), and

. N+1 . _1( M
(3.18) zk—{ ——sin (osz)J'

The value of i, is the row index such that the submatrix PN(k) nearly touches
the error curve (3.14) and hence has a similar form as jps in (3.15) with N replaced
by a*N. Note that there is no need for a correction matrix PLOR(z5#%) in this
algorithm and that the matrix PRFC(2$°) has more nonzero entries than in section
3.2, as shown in Figure 3.3 for K = 3. We remark that since K grows relatively slowly
with N, we require N > 100,000 for our algorithm to use K > 3 and N > 106 for
K > 4.

This partitioning separates the matrix Pn(2$**) into submatrices Pl(\]f)@%wb)
whose nonzero entries can be computed by using the asymptotic formula without
correction and in such a way that the cost of computing P (z5?)cl? is minimal.
The minimal cost is achieved, up to a constant, by balancing the cost of computing
PREC (2 chEb) 19 with the cost of the K matrix-vector products P( (z5heD) 9 for
k=1,... K.

AS we show later, the matrix PRFC(2$7¢?) contains O(K N/a) nonzero entries
and hence can be applied to a vector in O(K N/«) operations. In a similar fashion to
the algorithm described in section 3.2, we compute the nonzero entries of PREC (z§k<b)
by using the three-term recurrence relatlon (3.16).

( cheb)

The other matrices P& (z52¢) for k = 1,...,K are applied to a vector in
O(N log N) operations by employing the asymptotlc formula (3.10) evaluated via the

DCT. Notice that the nonzero entries of P(k)( cheb) form a rectangular submatrix of
P (2§?), and therefore the matrix-vector product ng)( cheb) e é\e,q can be computed

Legendre polynomials

oSN o2N alN N
(31 T
| 2 -
B /
Sl ~
8 3 o —~ —~
= Sz 1| 3 3 3
2 | &= %= =
. g : ) & &l
() ol ~ —~
= ez \ 2z az .z
2 [aila| = &
9 \
= \
O ~
~__

Fic. 3.3. Partitioning of the matrix PN(Q%WI’) employed to compute the forward transform.
The dashed line indicates the boundary of the region in which the asymptotic formula can be used
without correction, and the gray region indicates the monzero entries of the matriz PREC(wCheb)
The diagram is not drawn to scale, and in practice the submatriz PREC( cheb) occupies just a tiny

proportion of Py (w‘hEb)
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by restricting the DCTs when applying the matrices Un—1(z$???) and Tn(z5r).
Again, one can think of this as pre- and postmultiplying the Chebyshev—Vandermonde
matrices by identity matrices with certain entries on the diagonal zeroed out.

We now tidy up some unfinished business and detail how to partition the matrix
P (2§) in (3.17) and analyze the complexity of the resulting algorithm. First, the
number of nonzero entries in PREC(252¢%) can be calculated by artificially cutting it
up into rectangular regions, and to leading order it has

K—-1
(0] = (S o o (28) - (2)

ngN(l—1>
T @

nonzero entries, where the last approximation uses sin~!(z) ~ z for |z| < 1. There-

fore, the leading order cost of computing P& (252¢0)c'¢? is O(K N/a) operations, and
we want to balance this with the O(K N log N) cost of computing PREC(z5k0)c v leg
for k =1,..., K. To balance we should select a such that KN/a = KNlogN, i.e.,

a = O(l/logN). In practice, we have found that o = (1/log(N/nar)) is a good
choice for large IV, and to avoid this becoming too close to 1 when IV is small we take

(3.19) a =min(1/log(N/nu),1/2).

Moreover, this discussion also determines K since we need to partition the matrix
PN(x%l@b) into K + 1 parts so that a1 N < nj;, and therefore we have

K = O (log N/loglog N).

Putting this together, we have described an algorithm for the forward trans-
form that requires O (KN log N) operations, i.e., O (N(logN)?/loglog N) opera-
tions. Furthermore, since the algorithm only employs the asymptotic formula for
(n,8), where |Rarn(0)| < €, the transform is numerically stable. Additionally, the
block partitioning means almost all computations can be vectorized, and since each
of the K + 1 matrix-vector multiplications as well as the DCTs in the asymptotic
formula are independent, the algorithm is trivially parallelizable.

4. The inverse transform: Chebyshev to Legendre. The inverse transform
converts a vector of Chebyshev coefficients, c§?, to a vector of Legendre coefficients,
cé\,q. Similarly to the forward transform, it can be represented by a matrix-vector

product involving Chebyshev— and Legendre—Vandermonde matrices:
l che che chne
(4.1) ey’ =Pr(eR®) T (a ™).

We begin with the integral definition for the Legendre coefficients, i.e.,

1
(4.2) cles = / pn (z) Py (2)dz, 0<k<N,
—1

1Pl

where P,(z) is the degree n Legendre polynomial and py(x) = Tn(z)c§ is the
polynomial with Chebyshev coefficients c57¢* as in (1.1). Since py () is a polynomial

of degree at most N, for any 0 < n < N the integrand, p(x)P,(z), is a polynomial of
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degree at most 2V, and the (2N + 1)-point Clenshaw—Curtis quadrature rule is exact
for all the integrals in (4.2). Therefore, the Legendre coefficients satisfy the discrete
sums

2N
1
cleg — B2 ZwJpN (z) Py (z5), 0<n<N,
25
where —1 < zony < -+ < g < 1 and way,...,wy, are the Clenshaw—Curtis quadra-

ture nodes and weights, respectively. Again, we have indexed the nodes in re-
verse order for easier notation later. Note that these Clenshaw—Curtis nodes are
just the Chebyshev points from (3.2) (with N replaced by 2N) and hence 2§k =

(o, ... ,ng)T. Moreover, denote by wspy the vector of Clenshaw—Curtis weights,
won = (wo, ... ,wQN)T, which can be computed in O(N log N) operations using the
algorithm of Waldvogel [39], and s, the orthonormalization vector for Legendre
polynomials, sy = ([[Pofl5>- -, HP2N||2_2)T. With this notation, (4.2) takes the
following compact form:

(4.3) Y = [Int1|0n] Dy, Pon(@5h®)" Dus,, pr(zSK")

che che IN che
= [In41|0n] Dy, Pon(z5i") D, Tan(z5k") { 0;1} [

where Dy, and Ds,  are diagonal matrices with diagonal entries wyy and s,y
respectively.

The vector of Legendre coefficients c 9 in (4.3) has been expressed in terms of
a matrix-vector product 1nvolv1ng Pon(z cheb) , whereas the original relation (4.1)
involves the inverse Pn(z§2?) 1. Therefore, at the cost of doubling the size of the
Legendre—Vandermonde matrices, we are able to employ the same asymptotic formula
(3.3), as before. Note that the premultiplication by [In41|0x] in (4.3) means that

only the first N + 1 rows of PgN(ggfj\Fb)T are required in practice.

4.1. The transpose of the asymptotic formula. To apply the transposed
Legendre-Vandermonde matrix, PzN(gg}}V&b)T, we transpose the asymptotic formula
for quasimatrices (3.10):

M—1

(4.4) Pan(cos®)T Z Dcy,, O [0| Uan_1(cos8)]TD um(0) + Tan(cos H)TDUM(Q))
m=0
+Ru(0)7,

where 2 = cosf. Thus, when = = 25" = cos(85a¢"), the relation (4.4) expresses
Pan (a:g}}\?b)T as a weighted sum of transposed Chebyshev-Vandermonde matrices
Uan—1(z5h)T and Tan(z5k®)T. Since we have indexed the Chebyshev points in

decreasing order, the Chebyshev-Vandermonde matrix Tan(25h¢?) is symmetric, i.e.,

Ton (z55")" = Tan(25i"),

and can be applied to a vector in the same way as before.
For [0]| Uan—_1(z55*)]T we use the conversion matriz [23],



A160 NICHOLAS HALE AND ALEX TOWNSEND

= O

o
N[

(SIS

INX2N
Son—1 = eR ,

0
1
2

= .
= O
D=

which converts Chebyshev coefficients in a series of Ty, ..., Ton_1 to coefficients in a

series with Up,...,Usn_1 so that
(4.5) Uan-1(25%")S2n -1 = Tan-1(z55").

Using (4.5), we then have

chebyT 0 0
(4.6) [0 Uan-—1(z58")]" = |:U2N_1($gi]z\/gb)T:| = [ 2N \Tan- 1(335}]1\7617)
Hence, we can apply [0 | Uan—_1(z25%)]7 to a vector in O(N log N) operations by using
the DCT and solving a lower triangular linear system with two nonzero diagonals in
O(N) operations. Therefore, each of the terms in the asymptotic formula can be
applied in O(N log N) operations, and the doubling of the Chebyshev grid means the
implied constant is around a factor of two larger than the forward transform.

4.2. Block partitioning for computing the inverse transform. As with
the forward transform, we partition the transposed Legendre—Vandermonde matrix so
that we employ the asymptotic formula (4.4) only for entries for which it gives an accu-
rate approximation. In fact, the block partitioning is almost identical, since the error
curve (3.14) is essentially the same. In particular, we partition P2N(x§}}\?b) so that

P2N($gi]z\/gb) PREC cheb 4_21)(21;)I cheb ’

which can be seen in Figure 4.1, where ¢}, is simply (3.18) with one NN replaced by 2N.

Chebyshev points (in )

i iy i
REC (,.cheb\T
PzN (Ec 7 )
203 N Pl = —= .
4 /7 || N
g 202 N y
9 / \
g / P@ (xShed)T \
el I 2N \=2N \
2 . ‘
2aN
o)
g [ \
1
| |
3 ]l P(l) cheb 1
, SR (k)T ,
] 1
[ i
2N Lt I

Fic. 4.1. Partitioning of the matriz PzN(zC}]’\}Eb)T in the algorithm for the inverse transform.
The dashed line indicates the boundary of the region in which the asymptotic formula can be employed
without correction, and the gray region indicates the nonzero entries of the matriz PREC (_g}j\,eb)T
Again, this diagram is not drawn to scale and in practice the gray region represents a tmy proportion

of the matriz Pan (z5hke®)”
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As in section 3.3, to balance the computation costs we require a = O(1/log N),
and hence K = O(log N/ loglog N). To apply the matrix PSEC (252¢)T to a vector we

use the three-term recurrence relation (3.16) to compute its O(K N/ o) nonzero entries.

For the matrix-vector products involving each P(2];\)I (gg’}\fb)T, we use the transposed

asymptotic formula (4.4) evaluated using the DCT and the relationship (4.6). Hence,
in total, the numerically stable algorithm described for the inverse transform requires
O(N(log N)?/loglog N) operations to convert N Chebyshev coefficients to Legendre
coeflicients.

5. Numerical results. Here we no longer consider the unstable algorithm for
the forward transform, described in section 3.2, and instead concentrate on the algo-
rithms that we advocate for the forward and inverse transforms. All numerical exper-
iments were performed on a single core of a 2011 1.8-GHz Intel Core i7 MacBook Air
with MATLAB 2013a. Execution times should be considered as approximate. The
accuracy results are determined by comparing to an extended precision multiplica-
tion of the vector of coefficients by the transformation matrices L™ and M™ from [2].
For timing comparisons, we compare against the direct multiplication of a vector by
Py (2§°) computed in MATLAB via the three-term recurrence relation.

5.1. Numerical results for the forward transform. In our implementation
we use M = 10 for all N, though the efficiency of the algorithm for the forward
transform is not particularly sensitive to the choice of M (see Figure 5.1 (left)). For
M = 10 we find our algorithm is faster than the direct O(N?) computation when
N > 512 and that N = 10° takes 31.2 seconds.

4 || —direct .
10 —5
—7 i

—10 .

——15 .

Execution time (sec)
Absolute error

Fic. 5.1. Left: Execution times for the forward transform for 103 < N < 105 and M =
5,7,10,15 in MATLAB. Right: For M = 10, the absolute error in the Chebyshev coefficients after
converting N + 1 Legendre coefficients to Chebyshev with different decay rates: no decay (blue),
N=1/2 (green), N~ (red), and N=3/2 (cyan).

The dominating computational cost of our algorithm is in computing the DCT.
Unfortunately, MATLAB does not natively support a DCT command,® but we can
achieve the same transform via a FFT as follows [12, 36]:

3Note that the Signal Process Toolbox in MATLAB does supply a DCT command, but this
utilizes the FFT in a similar way to the dctl code given above.
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function v = dcti(c)

%DCT1  Compute a (scaled) DCT of type 1 using the FFT.

% DCT1(C) = T_N(X_N)*C, where X_N = cos(pi*(0:N))/N and T_N(X) = [T_O,
% T_1, ..., T_N]J(X). T_k is the kth 1st-kind Chebyshev polynomial.

N = size(c, 1); % Number of terms.
ii = N-1:-1:2; % Indicies of interior coefficients.
c(ii) = 0.5%c(ii); % Scale interior coefficients.
v = ifft([c ; c(ii)]); % Mirror coefficients and call FFT.
v = (N-1)*[ 2xv(N) ; v(ii) + v(2*N-ii) ; 2%v(1) 1; % Re-order.
v = flipud(v); % Flip the order.

end

However, the vector is doubled in length before applying the FFT and this means
that this is twice as expensive as a DCT. We expect that the execution times of our
algorithm would improve by nearly a factor of two if MATLAB allowed direct access
to the FFTW DCT routines [10]. In Figure 5.1 (left) we show the execution times of

the forward transform for M = 5,7,10,15 and 10? < N < N°.
To get an idea of the accuracy we can expect in the forward transform, suppose

the entries of the vector ¢i? decay like ™", i.e., (9),, = O(n™"), and define D, =

diag(1™",..., N~"). Then we have
leg _

~leg
CN = DrQN ,

N
where the vector ¢y? has no decay, and hence

‘ o0

Since max,e(_1,1] Pn(2) = P, (1) = 1, the infinity norm of the matrix Px (z§**) D, is
the absolute sum of the first row, and hence

cheby leg Aleg
HPN@N Jen N

| < [Pns)D,|,

N, r=0,
N
cheb _ —r _ _ O(\/N)’ r= 1/2’
[P (2 )Dr||oo—;" = Hye = O(logN), r=1,
o(1), r>1,

where Hy , is the generalized harmonic number [3, Theorem 3.2]. Therefore, we
expect the absolute error of the forward transform to grow something like Hy ;.

To investigate the actual error we observe in computing the forward transform
we take random vectors* of Legendre coefficients that have entries decaying like n ="
with » = 0,1/2,1,3/2. Figure 5.1 (right) shows the maximum absolute error in the
computed Chebyshev coefficients. We observe an error growth of O(N3/2-"/log N)
for r = 0,1/2,1 in the computed vector c§**® and no error growth for r = 3/2. For
r = 0,1/2,1, this observed error growth seems to be \/N/ log N times worse than
Hpy ,», and we cannot explain this mysterious factor. However, for suitably decaying

4Vectors are generated with the MATLAB command randn with the random number generator
T

mt19937ar and rng(1), and decay is introduced by scaling the nth entry by n=".



A FAST CHEBYSHEV-LEGENDRE TRANSFORM Al163

4 || —direct .

Execution time (sec)
Absolute error

Fi1c. 5.2. Left: Ezecution times for the inverse transform for 103 < N < 10% and M =
5,7,10,15 in MATLAB. Right: For M = 10, the absolute error in the N computed Legendre co-
efficients after converting Chebyshev coefficients with different decay rates: no decay (blue), n—1/2
(green), n=1 (red), and n=3/2 (cyan).

vectors gl]\c}g , i.e., entries that decay like n or faster, the error in PN(gf\’,Wb)gé\e,g

remains bounded with N. Often, in practice, a Legendre expansion approximates a
smooth function and hence the coefficients decay sufficiently. Note that the vectors of
coefficients taken in this experiment are not derived directly from functions but instead
mimic the algebraic decay that is expected from algebraically smooth functions. In
particular, the observed absolute error does not include an error from truncating an
infinite Chebyshev series of a function.

—3/2

5.2. Numerical results for the inverse transform. Our implementation of
the inverse transform also uses 10 terms in the asymptotic formula (4.4), but as before
the efficiency of the algorithm is not particularly sensitive to the value of M (Figure
5.2 (left)). The cost of the inverse transform is approximately twice that of the forward
transform because the algorithm for the inverse evaluates DCTs on vectors of twice
the length.

In Figure 5.2 (right) we repeat the same accuracy experiment for the inverse trans-
form. This time we observe an error growth of O(N?3/2) for r = 0 and O(N log N)
for r = 1/2,1,3/2. An error growth of O(N) for any r > 1/2 is due to the or-
thogonalization scaling factor, ||P,||5 2, that appears in the integral definition (4.2)
of the Legendre coefficients. Conventionally, Legendre polynomials are scaled so that
P,(1) = 1 for all n, and for this choice | P,||;* = n + 1/2. Our algorithm computes
the coefficients in the orthonormal Legendre basis to essentially machine precision,
but to convert them to the standard Legendre basis the nth coefficient is multiplied
by n 4+ 1/2. In addition, we again observe a mysterious log factor that we cannot
explain.

To further investigate the error, we check that the forward and inverse transfor-
mations are numerically inverses of each other. We take random vectors and introduce
decay by scaling them by n=" with r = 0,1/2,1,3/2, in the same way as in the previ-
ous experiments. In Figure 5.3 (left) we show the absolute error between the original
vector and the vector converted to Legendre coefficients (forward transform) and then
back. In Figure 5.3 (right) we reverse the order of the transforms, applying the in-
verse transform first, and check the absolute error between the original vector and the
vector converted to Chebyshev coefficients and then back.
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Absolute error
Absolute error
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Fic. 5.3. Left: The absolute error in N Chebyshev coefficients after converting them to Legendre
coefficients and then back. Right: The absolute error in N Legendre coefficients after converting
them to Chebyshev coefficients and then back. Here, we take random wvectors that have been scaled
to impose decay: no decay (blue), n=1/2 (green), n=1 (red), and n=3/2 (cyan).

6. Extensions and conclusion. We have presented a fast Chebyshev—Legendre
transform based on the asymptotic formula (3.3), and here we give possible extensions
to other related fast transforms and some applications.

Fast evaluation of Legendre expansions. The forward transform converts
Legendre coefficients to Chebyshev coefficients, and as an intermediary step of the
transform the Legendre expansion of degree N (1.2) is evaluated at the vector of
Chebyshev points z$°®. More precisely, z5¢* is the vector of Chebyshev points of
the second kind. This immediately gives a fast algorithm for evaluating a Legendre
expansion of degree N at 2§'** in O(N(log N)?/loglog N) operations. A similar fast
transform can be derived that evaluates a Legendre expansion at any other set of
Chebyshev points:

first kind: x; = cos ((k]\tél)ﬂ), 0 <k < N, the roots of T y1;

second kind: z = cos (%’r), 0 < k < N, the roots of Uy_; and +1;

third kind: xj = cos (Nk:l), 0 <k < N, the roots of Viy and 1 (see [22]);
2

fourth kind: zj = cos (%), 0 <k < N, the roots of Wy and —1 (see [22]).
2

These algorithms would still employ a DCT but of a different type: DCT-I for the

second kind, DCT-III for the first kind, DCT-V for the third kind, and DCT-VII for

the fourth kind (see [40] for further details).

Best least-squares approximation. The best least-squares approximation of
degree n > 0 to a Chebyshev expansion,

N
p) =Y ¢Tj(x),  wel-1,1],
=0

can be computed by truncating its Legendre expansion after n 4+ 1 terms. The for-
ward Chebyshev—Legendre transform can be used to computed the best least-squares
approximation in O(N (log N)?/loglog N) operations. First, the vector of Chebyshev
coefficients (cg,...,cny)” are converted to Legendre coefficients using the forward
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transform, and then this vector is truncated to length n 4 1. If the Chebyshev co-
efficients of the best least-squares approximation are required, for example, in the
polyfit command in Chebfun, the n + 1 Legendre coefficient can be converted back
to Chebyshev by the inverse transform.

Fast Chebyshev—Jacobi transform. Legendre polynomials are a special case
of Jacobi polynomials, and Hahn [14, 22] gives a more general asymptotic formula that
remains remarkably similar to (3.3). We expect that this asymptotic formula also leads
to a fast Chebyshev—Jacobi transform with approximately the same methodology.
However, we have not yet been able to find an accompanying explicit error formula,
which is useful for deriving the details of the algorithm.

Fast spherical harmonic transform. The spherical harmonic expansion of a
function takes the form

f(e,cb):fj Z ap B (cos )™,

n=0m=-—n

where (0, ¢) are spherical coordinates parameterizing the surface of the sphere em-

bedded in R? and Pr‘Lm| is the associated Legendre polynomial of degree n and or-
der |m| [28]. There are many algorithms for the fast spherical harmonic transform
[19, 28, 33], but it may also be possible to derive an algorithm that has a similar
flavor to this paper. It would be interesting to consider the advantages, if any, of a
fast algorithm for this transform based on an asymptotic formula for P,Lm‘

leave this for future work.

, and we

Conclusion. We have presented an O(N(log N)?/loglog N) algorithm for the
Chebyshev-Legendre transform, which is faster than the direct approach for N >
512. We block partitioned the Legendre-Vandermonde-like matrix to ensure that the
asymptotic formula was evaluated only when it was valid, thus ensuring stability of
the algorithm, and the use of DCTs allowed fast evaluation. If the coefficients in a
truncated series expansion decay faster than n~3/2, then the forward transform has
no error growth with NV and the inverse transform has an error growth of O(N log N).
Our publicly available MATLAB implementation [15] can convert between as many
as 1 million Legendre coefficients and Chebyshev coefficients with high accuracy.
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