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FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS∗
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Abstract. Fractional differential equations are becoming increasingly used as a modelling tool
for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of
a fractional differential operator causes memory (time fractional) or nonlocality (space fractional)
issues that impose a number of computational constraints. In this paper we develop efficient, scalable
techniques for solving fractional-in-space reaction diffusion equations using the finite element method
on both structured and unstructured grids via robust techniques for computing the fractional power
of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional
Allen–Cahn reaction-diffusion equations in two and three spatial dimensions, and analyzing the speed
of the traveling wave and size of the interface in terms of the fractional power of the underlying
Laplacian operator.

Key words. finite elements, fractional diffusion, numerical solvers

AMS subject classifications. 65M60, 35K57, 35Q92

DOI. 10.1137/110847007

1. Introduction. Fractional models, in which a standard time or space differ-
ential operator is replaced by a corresponding fractional differential operator, have a
long history in, for example, physics, finance, and hydrology, with such models often
being used to represent so-called anomalous diffusion. In water resources, fractional
models have been used to describe chemical and contaminant transport in heteroge-
neous aquifers [1, 9, 44]. In finance they have been used because of the relationship
with certain option pricing mechanisms and heavy-tailed stochastic processes [55].
More recently, fractional models of the Bloch–Torrey equation for describing anoma-
lous diffusion have been considered in the context of magnetic resonance [43]. In
cell biology, anomalous diffusion has been measured in fluorescence photobleaching
recovery [54] and fractional-in-time models have been developed for simple types of
chemical reaction-diffusion equations [69] and to describe microscale diffusion in the
cell wall lining of plants [60]. Liu and Burrage [40] have fitted parameters to time
fractional gene regulatory models of Bacillus Subtilis, a bacterium found in soil.

A number of approaches have been considered for both the time fractional and
space fractional differential equations. In the time fractional setting, a common ap-
proach is to approximate the fractional-in-time differential operator by a finite differ-
ence scheme that has memory going all the way back to the initial condition. Such an
approximation can result in explicit [12, 68] or implicit schemes [35]. Fourier series
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A2146 KEVIN BURRAGE, NICHOLAS HALE, AND DAVID KAY

and spectral approximations have also been considered [13, 38]. More recently variable
order fractional operator problems have been investigated [71]. In the space fractional
setting, Liu, Anh, and Turner [39] have considered the numerical approximation of the
fractional Fokker–Planck equation. Meerschaert and Tadjeran [46] have used finite
difference approximations, and Turner and coauthors have investigated various stabil-
ity and convergence issues based on finite difference approximations [27, 42, 67]. Liu,
Turner, and Cox [41] have also considered a finite volume approach. Li and Xu [37]
have considered a spectral approach for the weak solution of the space-time frac-
tional diffusion equation, while Sun and Wu [59] have considered difference schemes
for the fractional diffusion wave equation. Many of these approaches have limitations
in terms of computational efficiency when two or three spatial dimensions are consid-
ered. For example, Roop [50] has considered a finite element approach but computes
directly the fractional power of the discrete Laplacian, and this approach does not
scale well. Yang et al. [66] have solved the time-space fractional diffusion equation
in two spatial dimensions with homogeneous Dirichlet boundary conditions using the
matrix transfer technique, and compute the function of a matrix times a vector either
by a preconditioned Lanczos (symmetric) or M-Lanczos (nonsymmetric) technique.

The aim of this paper is to obtain a robust, efficient approach that can be equally
applicable to fractional-in-space problems in two or three spatial dimensions using a
finite element method (FEM) on structured and unstructured grids. The computa-
tional heart of this approach is the efficient computation of the fractional power of a
matrix times a vector. We will consider three techniques: the contour integral method
(CIM), the extended Krylov subspace method (EKSM), and the preassigned poles and
interpolation nodes (PAIN) method. We will see that in the first and last cases we
can find preconditioners that will allow almost mesh independent convergence.

We will showcase our approach by solving fractional-in-space reaction-diffusion
problems of the form

(1.1)
∂u

∂t
+K(−Δ)αu = g(u), x ∈ Ω ⊂ R

d,

using the FEM and a semi-implicit Euler scheme for various α ∈ (1/2, 1]. The system
is completed with either a homogeneous Dirichlet boundary condition or a homo-
geneous Neumann-type boundary condition, where mass is conserved within Ω. A
discussion of these boundary conditions can be found in [11]. Standard equations and
models that fall into this class include the fractional Allen–Cahn and Fisher equations,
as well as, of course, the fractional heat equation when g = 0. We have chosen this
class of problems as recent work [17] has established how the speed of the traveling
wave and the thickness of the interface changes when α �= 1—see section 6.

The outline of the paper is as follows. In section 2 we review some important issues
associated with modeling via fractional differential equations. In section 3 we review
the matrix transfer technique that allows us to approximate the fractional Laplacian
by the fractional power of a matrix and give a review of relevant computational
techniques for computing appropriate matrix functions f(A)b. These include the CIM,
EKSM, and PAIN methods. In section 4 we investigate the Neumann formulations
of (1.1), which give rise to numerical issues different than Dirichlet formulations as
the discrete Laplacian is now singular. Section 5 outlines our approach in terms of
iterative methods and preconditioning for the CIM and PAIN methods in terms of
mesh independent convergence, while section 6 gives detailed numerical results and
analysis of the fractional Fisher and fractional Allen–Cahn models, with particular
focus on the relationship between α and the speed of the traveling wave and the size
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of the interface. Section 7 gives some conclusions and thoughts for future work.

2. Background to fractional modeling. In order to understand why frac-
tional models are useful and how they might arise, consider the classical advection-
diffusion equation which can be derived from two different equations. Let u(x, t) be
the particle mass density of some species of particles diffusing and let ν be the con-
stant average velocity of those particles. Fick’s law then states that the flux V is the
rate at which mass is transported through a unit area and is given by

(2.1) V = νu −D∇u,

where D is the diffusion tensor. Conservation of mass requires

(2.2)
∂u

∂t
= −∇ · V,

and combining (2.1) and (2.2) gives the classical advection-diffusion equation

(2.3)
∂u

∂t
= −νu+∇ ·D∇u.

However, the assumptions that underlie this approach can be questioned for het-
erogeneous media [64]. The continuum hypothesis uses local averaged values, but
averaged quantities fluctuate wildly as the averaging volume becomes smaller. This
is also related to the homogenization principle that is fundamental for predicting
macroscopic properties from microscopic features [26] that are often assumed to be
independent. But in some settings this independence between the microscopic and
the macroscopic may not hold and the homogenization principle can fail. It is in this
setting that fractional models can offer insights that traditional approaches do not
offer, especially for the case of diffusion in heterogeneous environments.

In heterogeneous structures such as those possessing spatial connectivity, move-
ment of particles may be facilitated within a certain scale—so-called superdiffusion.
Thus the spatial complexity of the environment imposes geometric constraints on the
transport processes on all length scales, which can be interpreted as temporal cor-
relations on all time scales. Nonhomogeneities of the medium may fundamentally
alter the laws of Markov diffusion, leading to long range fluxes and non-Gaussian,
heavy-tailed profiles [6, 47], and these motions may no longer obey Fick’s law [70].
Schumer et al. [56] demonstrated that a fractional Fick’s law is a governing equation
for solute transport in porous media where temporally correlated velocity fields do
not dominate transport processes. A fractional Fick’s law naturally implies spatial
and temporal nonlocality and can be derived from rigorous approaches using spatial
averaging theorems and measurable functions [10].

Meerschaert, Mortensen, and Wheatcraft [45] define a fractional Fick’s law as

(2.4) V = νu−D∇βu,

where β = 2α− 1 and α ∈ (1/2, 1]. Combined with (1.2) this gives

(2.5)
∂u

∂t
= −νu+∇ ·D∇βu.

In three spatial dimensions,

(2.6) ∇β =

(
∂β

∂xβ
,
∂β

∂yβ
,
∂β

∂zβ

)T

.
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This is known as the Riemann–Louiville fractional gradient vector. The components
of this vector are fractional derivatives which, for β ∈ (0, 1), take the form

(2.7)
∂β

∂xβ
f(x, y, z) =

1

Γ(1− β)

∂

∂x

∫ x f(s, y, z)

(x− s)β
ds,

with similar expressions for ∂βf
∂yβ and ∂βf

∂zβ [49].
We can relate fractional derivatives to the underlying behavior of an ensemble of

particles undergoing a continuous time random walk. When a fractional derivative
replaces the Laplacian operator in the diffusion equation, the resulting solution de-
scribes the probability density function of particles undertaking a heavy-tailed random
walk, where occasional large jumps dominate the more common smaller jumps. On
the other hand, a fractional time derivative leads to subdiffusion in which the waiting
time between particle jumps has a long-tailed probability and where the mean square
displacement of an ensemble of particles behaves as tα, α ∈ (0, 1]. The fractional-in-
space diffusion equation

(2.8)
∂p

∂t
= −K(−Δ)αp

can be viewed as describing the probability density function of particles undergoing
superdiffusion, where (−Δ)α is the fractional Laplacian operator. Thus it makes sense
that this equation should play the fundamental role in using fractional models.

The relationship between (2.5) and (2.8) is not trivial and so Turner, Ilić, and
Perr [60] work with potential theory. They define a potential ū = (−Δ)α−1u and note
that since α−1 < 0, the expression for the potential can be interpreted as an integral.
Thus the fractional gradient ∇α can be interpreted as ∇α = ∇(−Δ)α−1. In the case
that D = KI, (2.5) becomes

(2.9)
∂u

∂t
= −νu−K(−Δ)αu.

There are some subtle issues associated with the interpretation of the fractional
Laplacian and, for example, the Riesz spatial derivatives. These issues manifest when
considering boundary conditions, and have been discussed, for example, in [65]. Guan
and Ma [21] note that a (−Δ)α-harmonic function on a finite domain cannot be de-
termined by its value on the boundary of that domain, but on the whole space minus
the domain. On the other hand, Ilić et al. [27] have shown that problems of the form
(2.9) with ν = 0 are well defined on finite domains with homogeneous boundary con-
ditions of Dirichlet, Neumann, and Robin type. They show this by noting that (−Δ)α

has the same interpretation as −Δ in terms of its spectral decomposition for these
homogeneous boundary conditions. These apparent contradictions are due to the dif-
ferences in the definition of the fractional Laplacian; see [65] for further discussion. In
the latter case the fractional Laplacian can be dealt with by using the matrix transfer
technique that was introduced in [28, 29]. In essence, the spatial discretization of
the fractional Laplacian is obtained by first finding a matrix representation, A, of
the Laplacian (whether it is by finite difference, finite element, or finite volume) and
raising it to the same fractional power Aα.

The case of nonhomogeneous boundary conditions is more complicated, and there
is much confusion in the literature. Ilić et al. [28] decompose the operator as (−Δ)α =
(−Δ)α−1(−Δ), where the rightmost operator is used to deal with the nonhomogeneous
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boundary conditions for which it is well defined. They then use the matrix transfer
technique to solve an ordinary differential equation which requires both the compu-
tation of Aα and Aα−1 operating on different vectors. Gunzburger and Lehoucq [22]
have considered a nonlocal second order scalar elliptic boundary value problem aug-
mented with nonlocal Dirichlet or Neumann boundary conditions, and under appro-
priate conditions this reduces to the standard setting. This is an example of a more
extensive class of problems with general nonlocal operators. Andreu et al. [3, 4] have
considered p-Laplacian diffusion equations with Dirichlet and Neumann boundary
conditions. Du and Zhou [16] show through peridynamic nonlocal continuum theory
that nonlocal diffusion exhibits multiscale behavior beyond that of standard diffusion.

3. Modeling and computational methods. In this paper we will adopt an
FEM approach for solving (1.1), as such problems often arise in heterogeneous settings
and FEMs are appropriate for unstructured meshes. Let L be the standard FEM stiff-
ness matrix with appropriate boundary conditions, and let M be the corresponding
mass matrix. Following the work of Ilić et al. [28], we employ the matrix transfer tech-
nique, which states that the error introduced by approximating the fractional Lapla-
cian by a fractional power of the matrix A = M−1L converges at the same rate as the
underlying FEM discretization. Both L and M are real and symmetric, L is nonnega-
tive definite, and M is positive definite. Noting that M1/2AM−1/2 = M−1/2LM−1/2

is real, symmetric, and similar to A, it follows that the spectrum σ(A) of A is real.
Furthermore the nonnegative definiteness of L implies xTM−1/2AM1/2x ≥ 0 so that
A is also nonnegative definite and σ(A) ⊂ [0,∞).

When A ∈ RN×N is diagonalizable and a function f is defined on the spectrum
σ(A), the matrix function f(A) can be defined [25, Definition 1.2] as

(3.1) f(A) = Qf(Λ)Q−1,

where Λ = diag([λ1, λ2, . . . , λN ]) is a diagonal matrix of the eigenvalues λ1 ≤ λ2, . . . ,
≤ λN of A, Q is a matrix of corresponding eigenvectors, and [f(Λ)]j,j = f(λj).
If f is analytic in a connected open subset H(f) of the complex plane such that
σ(A) ⊂ H(f), then an equivalent definition [25, Definition 1.11 and Theorem 1.12] is
given by

(3.2) f(A) =
1

2πi

∫
Γ

f(z) (zI−A)
−1

dz,

where Γ ⊂ H(f) is a closed contour winding once around the spectrum σ(A) in the
counterclockwise direction.

Discretizing (1.1) semi-implicitly in time with a backward Euler approximation
leads, at the mth time step, to linear systems of the form

(3.3) (I+KΔt(M−1L)α)um+1 = um +Δtg(um).

The matrix function we then require is

(3.4) f(z) = 1/(1 +KΔtzα),

with H(f) ⊂ C\(−∞, 0]. Note that functions of the same form arise when using finite
difference approximations to fractional-in-time operators [65, 67], and so the meth-
ods we discuss in the next two sections are also applicable in a time-and-space frac-
tional setting. When A is nonsingular either definition (3.1) or (3.2) can be applied,
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but when the smallest eigenvalue λ1 = 0, the hypothesis that σ(A) is contained in
H(f), and (3.2) cannot be used directly. We discuss this issue further in section 4.

Higham has recently published an extensive monograph [25] on the computation
of matrix functions, however the problem f(M−1L) we consider is so large and dense
(even, for example, when f(x) = x) that forming it explicitly is infeasible; specialized
techniques are required. Fortunately it is not f(M−1L) we need in (3.3), but rather
its action on a vector, and in this section we consider recent methods which allow
efficient (and scalable) computation of f(M−1L)b by taking advantage of the sparsity
and structure of M and L.

We consider three different but related approaches. The first is a contour inte-
gral method (CIM) [24] based upon a quadrature discretization of (3.2). The other
two, the extended Krylov subspace method (EKSM) [15, 33] and the preassigned poles
and interpolation nodes (PAIN) method [23], are rational Krylov subspace-based tech-
niques. Further comparisons and far more detailed descriptions of these and other
rational f(A)b methods can be found in two recent PhD theses, [23] and [58].

In what follows we assume the matrix function f is analytic inH(f) ⊂ C\(−∞, 0],
that the matrix A has a known decomposition A = M−1L where M and L ∈ RN×N

are symmetric positive definite, and that the spectrum σ(A) of A is contained in an
interval [λ1, λN ] ⊂ (0,∞) where λ1 and λN are known (or can at least be computed).
In section 4 we extend the discussion to the case where λ1 = 0. Furthermore, we
suppose that both the action of A and shifted solves of the form (A − σI)x = b can
be computed efficiently. Further discussion of these linear solves is found in section 5.

3.1. Contour Integral Method. Until recently, Definition 3.2 was rarely ex-
ploited for numerical computation, but Hale, Higham, and Trefethen [24] propose
efficient quadrature approximations for computing f(A)b when σ(A) lies on or near
the positive real axis and H(f) = C \ (−∞, 0]. They show that although a näıve
discretization of (3.2) leads to methods requiring a number of quadrature points that
increases linearly with the condition number λ1/λN , choosing the contour Γ wisely
can lead to methods where the number of quadrature nodes needed to obtain a spec-
ified accuracy increases asymptotically as log(λ1/λN ) [24, Theorem 2.1]. Since the
number of nodes equates to the number of linear solves required, this makes the CIM
approximation to f(A)b “almost” optimal.

The contour is chosen by a conformal map from an annulus A1,R to C\{(−∞, 0]∪
[λ1, λN ]} (Figure 3.1), and the quadrature nodes and weights are given by mapping
the trapezoid or midpoint rule applied in the annulus using the same map. This leads
to an approximation of the form

(3.5) f(A)b ≈ rn(A)b =

n∑
j=1

wj (ξjI−A)
−1

b,

where the ξj are complex shifts lying on Γ. Equation (3.5) can be interpreted as
a rational approximation to f(A)b given directly in partial fraction form. When
A = M−1L, this can be rewritten as

(3.6) rn(M
−1L)b =

n∑
j=1

wj (ξjM− L)
−1

Mb.

Note that A itself need never be formed explicitly. A particular benefit of the CIM
is that each of the solves on the right-hand side of (3.6) are independent, making this
method easily parallelizable.

D
ow

nl
oa

de
d 

08
/0

7/
13

 to
 1

29
.6

7.
18

6.
98

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN EFFICIENT FEM FOR FRACTIONAL-IN-SPACE EQUATIONS A2151

(a) Preimage (b) Image

Fig. 3.1. Conformal map from the annulus A1,R (a) to the slit domain C \ {(−∞, 0] ∪
[λ1, λN ]} (b). The dots are the quadrature points in the CIM (i.e., the shifts used in the linear

solves) that lie on a circle of radius λN

√
1 + λ1/λN about the point λN . For real matrices, only

the quadrature points in the upper half-plane are needed.

Furthermore, since A is real the integrand in (3.2) is real-symmetric and f(A)
is twice the real part of the value obtained by integrating over the first half of the
contour. This means that we need only half of the quadrature points (i.e., those in the
upper half-plane) and therefore compute only half of the shifted solves. To simplify
later discussion we will denote by the subscript of r the number of linear solves in the
computation, rather than the degree of the underlying rational interpolant, and refer
to the n-point CIM approximation in the same manner.

Given L, M ∈ RNxN, b ∈ RN, a function f, and an integer n, the following MATLAB
code returns v, the n-point CIM quadrature approximation to f(M\L)b. The routines
ellipkkp.m and ellipjc.m on lines 3 and 5 are from Driscoll’s Schwarz–Christoffel
toolbox [14] but can be replaced by built-in MATLAB routines as described in [24].
Line 11 uses the MATLAB \ command to solve the linear systems in (3.6), although
more practical methods of doing this when N is large are discussed in section 5. The
parfor command on line 10 allows each of the shifted linear solves to be solved in
parallel when the MATLAB parallel toolbox is available.

0 % Contour Integral Method, adapted from [26, method1.m]

1 l = eigs(L,M,2,’BE’); l1 = l(1); lN = l(2); % Spectrum of M\L

2 k = (sqrt(lN/l1)-1)/(sqrt(lN/l1)+1); % A convenient constant

3 [K Kp] = ellipkkp(-log(k)/pi); % Elliptic integrals

4 t = .5i*Kp-K+(n-.5:-1:0)*2*K/n; % Midpoint rule points

5 [sn cn dn] = ellipjc(t,-log(k)/pi); % Jacobi elliptic functions

6 xi = sqrt(l1*lN)*(1/k+sn)./(1/k-sn); % Quadrature nodes

7 dxidt = cn.*dn./(1/k-sn).^2; % Derivative wrt t

8 wts = f(xi).*dxidt; % Quadrature weights

9 v = zeros(length(b),1); % Initialize output

10 parfor j = 1:n % Parallel solves

11 y = (xi(j)*M-L)\(M*b); % Solve using backslash

12 v = v + wts(j)*y; % Update solution vector

13 end

14 v = -4*K*sqrt(l1*lN)*imag(v)/(k*pi*n); % Scaling
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3.2. Krylov subspace methods. Krylov subspace methods are well known for
their application in solving linear systems (see, for example, [61, 62]). Although rarely
considered as an f(A)b problem, i.e., the application of a matrix function to a vector,
such linear solves can certainly be viewed as the special case where f(z) = z−1. The
same subspace projection ideas have been extended to more general functions [61].

From a polynomial Krylov space Kr of order r,

(3.7) Kr(A, b) = span{b,Ab, . . . ,Ar−1b},

the Rayleigh–Ritz approximation to f(A)b is given by

fr(A)b = Vrf(Ar)V
∗
rb,

where Ar is the Rayleigh quotient Ar = V∗
rAVr, and the columns of Vr, which

form a basis of Kr(A, b), are computed by a stabilized Gram–Schmidt process. It is
typically assumed that r is not large, so that f(Ar)b can be computed directly by,
say, an eigenvalue decomposition as in Definition 3.1 or by other methods described
by Higham [25]. The Krylov spaces (3.7) are nested, i.e., Kr+1(A, b) ⊂ Kr(A, b), so
the basis can be updated efficiently and the approximation refined iteratively.

The Rayleigh–Ritz approach can be interpreted as a polynomial approximation

fr(A)b = pr−1(A)b ≈ f(A)b,

where the degree r − 1 polynomial pr−1 interpolates f at the Ritz values σ(Ar) [53].
A natural extension to rational Krylov methods based upon rational interpolation
was introduced by Ruhe [51, 52]. The motivation here is that the additional cost of
needing to solve linear systems in the approximation is more than compensated for
by increased rates of convergence, and the overall computational work required can
be significantly reduced.

Given a polynomial qr−1 of degree r−1 with no poles in σ(A), the rational Krylov
space of order r associated with (A, b, qr−1) is given by

Qr(A, b; qr−1) = Kr(A, qr−1(A)−1b).

Again it is convenient in computations if the Qj are nested, so typically a sequence
of poles {ξ1, ξ2, . . . , } ⊂ {C ∪ {∞}} \ σ(A) is defined, and

(3.8) qr(z) =

r∏
j=1

(z − ξj), r = 1, 2, . . . .

Once the rational functions qr−1, and hence the subspaces Qr, have been chosen,
we then obtain the rational Rayleigh–Ritz approximation

fr(A)b = Vrf(Ar)V
∗
rb,

where Ar = V∗
rAVr , and the orthogonal columns of Vr form a basis of the now

rational Krylov subspace Qr(A, b).
If all ξj = ∞ in (3.8), then the rational Krylov method reduces to the polynomial

Rayleigh–Ritz method described above. Choosing ξ2j = ∞, ξ2j+1 = 0 gives the
extended Krylov subspace method (EKSM) [15, 33], discussed below.
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3.2.1. Extended Krylov subspace method. The EKSM method, introduced
by Druskin and Knizhnerman [15] and recently revived by Knizhnerman and Si-
moncini [33], is the special case of the rational Krylov methods where the poles {ξ2j+1}
are all chosen to be at the origin. This simple choice of pole locations means EKSM
approximations to f(A)b are generated from the rational subspace

K2r(A,A−rb),

of which an orthogonal basis V2r = [V2, V4, . . . , V2r] can be constructed by applying
Gram–Schmidt orthogonalization to

V̂2 = [b,A−1b], V̂2r = [AV
(1)
2r−2,A

−1V
(2)
2r−2], r > 1.

Here A = M−1L, so the V̂ are given by

V̂2r = [M−1LV
(1)
2r−2,L

−1MV
(2)
2r−2],

and solves with both M and L are required for each dimension of the subspace (except
the first). To remain consistent with the CIM method, we therefore refer to the degree
n EKSM approximation rn(A)b of f(A)b as that which requires n linear solves to
compute, and so n = 2r − 1 in the above.

For real-symmetric positive definite matrices A with spectrum in [λ1, λN ] and
functions analytic on C \ (−∞, 0], it can be shown [8, 33] that convergence of the
EKSM satisfies

(3.9) ||f(A)b− rn(A)b|| = O(exp(−n 4
√
λ1/λN )).

While this bound suggests that the number of linear solves required to obtain a certain
accuracy will increase more rapidly here than in the CIM as the condition number
rises (i.e., to the 1/4th power, rather than logarithmically), it is possible to show that,
for symmetric matrices, this is an optimal rate for a single pole location [8].

Pseudocode for computing the EKSM was given in the original paper [15], and
Simoncini gives MATLAB code in [57] which is easily modified to account for A =
M−1L without forming A explicitly.

3.2.2. Preassigned poles and interpolation nodes. In addition to prescrib-
ing the poles {ξj} that determine the rational Krylov subspace, we can also select the
interpolation nodes {αj}. The problem then becomes even more closely related to
that of best rational approximation, which is itself related to potential theory. While
the task of determining a best approximation is known to be a difficult one, there
are a number of ways of determining asymptotically optimal points. Levin and Saff
[36] give a detailed discussion of the varying approaches, and we recall some of that
information here.

Fekete points, which give the supremum of

(3.10)
∏
j �=k

1≤j,k≤n

|ξj − ξk||αj − αk|
|ξj − αk|2

for ξk ∈ (−∞, 0], αk ∈ [λ1, λN ], are considered the “cleanest” mathematically but are
difficult to compute numerically and rarely used in practice. Leja–Bagby points are an
approximation to Fekete points whereby an initial pole and node {ξ1, α1} are chosen
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(a) Preimage (b) Image

Fig. 3.2. Fejér–Walsh poles (crosses) and interpolation nodes (squares). Importantly, these
are both real.

arbitrarily and {ξk, αk}, k = 2, . . . , n are determined incrementally to minimize the
energy

(3.11)

k−1∏
j=1

|ξ − ξj ||α− αj |
|ξ − αj ||α− ξj |

for each k. Still these points are cumbersome to compute, and typically the allowed
values for {ξk} and {αk} are restricted to discrete subsets of (−∞, 0] and [λ1, λN ].
A code for solving this discrete problem, lejadc, appears in the appendix.

When H(f) is closed, connected, and disjoint from [λ1, λN ], the Fejér–Walsh
points are defined by the image of equally spaced points on the boundary of an an-
nulus A1,R under the unique conformal map from A1,R to S = H(f) \ [λ1, λN ]. In
the problem we consider S = C \ {(−∞, 0] ∪ [λ1, λN ]}, and the map is precisely that
given for the CIM appearing in Figure 3.1. We repeat the map in Figure 3.2, which
now contains the Fejér–Walsh interpolation nodes (squares) and poles (crosses) along-
side those from the CIM (circles). Since this map is available, appearing in [24] and
[2, section 49], we follow the suggestion of Levin and Saff [36, section 7.c] that these
Fejér–Walsh points can be “more efficient” than the other possibilities discussed above.
Some brief experiments, at least with discretely chosen Leja–Bagby points, gave sim-
ilar results.

As with the polynomial Krylov approximation, the PAIN method can be thought
of as the evaluation of an interpolant (now rational) in Newton form. As such, certain
stability issues arise. In particular we must sensibly order the nodes (and poles) that
define the denominators qr(z), and hence the subspaces Qr. We follow the suggestion
of Reichel [48] by ordering the Fejér–Walsh points so that (3.11) is satisfied for each
k = 1, . . . , n, which can be done using the lejadc code mentioned above.

The convergence properties of the PAIN method are directly related to those of
the underlying rational approximant rn on the spectrum of A. Güttel [23] shows that,
when choosing the nodes and poles of the rational approximant in any of the ways
described above, we have

(3.12) lim sup
n→∞

||f − rn||1/n[λ1,λN ] ≤ R−1,

where R is the outer radius of the annulus A1,R used to define the Fejér–Walsh points
appearing in Figures 3.1(a) and 3.2(a). By the same argument as in [24, Theorem 2.1],
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one can show that the degree of the rational function needed to obtain a specified
accuracy increases only logarithmically with the condition number λN/λ1. Güttel
also shows that this convergence rate is not more than a factor of two worse than
the rational best uniform approximation r∗n of type (m − 1,m − 1) to f on [λ1, λN ]
[23, Remark 7.7]. For complex matrices, the CIM yields a result similar to (3.12), but
with the R being replaced by

√
R. However, as described in the previous section, when

the matrix A is real we need only use the quadrature points in the upper half-plane,
which effectively replaces n with 2n in the exponent and recovers (3.12).

Given L, M ∈ RNxN, b ∈ RN, a matrix function f, and an integer n, the MATLAB
code below returns v, the degree n Fejér–Walsh PAIN approximation to f(M\L)b. Here
f is a matrix version of the function f suitable for evaluating the lower triangular
subspace projection Ar, such as that returned by the MATLAB routine funm. The
inverse action of f(A) can be applied efficiently by uncommenting line 9. The vectors
xi and alpha are given by line 6 in the CIM code, but with line 4 replaced by
t=1i*Kp-K+(n-.5:-1:0)*2*K/n and t-K+(n-1:-1:0)*2*K/(n-1) respectively. The
function lejadc (which can be found in the appendix) Leja-sorts the nodes and poles
as described above. Again we use the MATLAB \ command to solve the linear systems
in line 4, but discuss in section 5 more practical methods for large N.

0 % PAIN method, adapted from Guettel’s thesis [25]

1 v = zeros(length(b),1); K = eye(n); H = diag(alpha); % Initialize

2 [alpha,xi] = lejadc(alpha,xi); % Leja-sort the nodes.

3 for r = 1:n

4 w = (M*xi(r)-L)\((L-alpha(r)*M)*b); % New basis vector

5 K(r+1,r) = norm(w); % Update K

6 H(r+1,r) = xi(r)*norm(w); % Update H

7 Ar = H(1:r,1:r)/K(1:r,1:r); % Rayleigh quotient

8 fr = f(Ar); % Matrix function

9 % fr = fr\[1 ; zeros(r-1,1)]; % Uncomment for f(A)\b

10 v = v + fr(r,1)*b; % Update solution vector

11 b = w/norm(w); % Renormalize b

12 end

3.3. Comparison of CIM, EKSM, and PAIN. We end this section by testing
the three f(A)b methods discussed above on the problem

(3.13) u−K (−Δu)α = x(x − 1)y(y − 1) in Ω = (0, 1)× (0, 1),

with the Dirichlet boundary condition u(∂Ω) = 0.
We use a sequence of six uniformly refined triangulations of the domain Ω and

solve all linear systems using the MATLAB \ command. We take K = 0.01 and show
in Figure 3.3 results for α = 0.75, which seem representative of the results for all α ∈
(0.5, 1). The x-axis shows n, the number of linear solves, which are assumed to be the
expensive stage of the computation, and the y-axis shows the infinity norm of the error.
For the first two levels the reference solution is computed using the MATLAB mpower

command, and for the more refined grids where this becomes too expensive we choose
the 100-point CIM quadrature approximation. Timings are given in Table 3.1, and all
computations were performed on an AMD 2.6GHz tricore desktop in MATLAB 7.12.

Figure 3.3 shows that, as a function of the number of linear solves, the convergence
of the CIM and the PAIN method are very similar and closely follow the bound (3.12).
Although degrading more as the size of the mesh increases, as suggested by (3.9), the
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Fig. 3.3. Error in the CIM (◦—◦), EKSM (+—+), and PAIN (�—�) approximations to the
matrix function f(A)b arising from a FEM approximation to (3.13) as a function of n, the number
of linear solves, on a series of increasingly finer meshes.

Table 3.1

Timing results for solving (3.13) using the CIM, PAIN, and EKSM methods of degree n = 40
(i.e., involving 40 linear solves with backslash). The complex-valued shifts of the CIM make it up
to a factor of 2 slower than PAIN, whereas the simplicity of the solves in EKSM makes it around
twice as fast.

Level N Cond. no. CIM time PAIN time EKSM time
1 145 3,894 0.0262 0.0291 0.0193
2 545 14,488 0.1407 0.3592 0.0563
3 2,113 57,486 0.8678 0.6704 0.2848
4 8,321 230,020 4.7929 2.7610 1.7202
5 33,025 920,038 27.218 15.499 8.5777
6 131,585 3,680,178 165.01 90.953 52.112

curves for the EKSM typically lie below those for the CIM and PAIN methods. In
particular, the EKSM gives a surprisingly accurate solution even after just two solves,
as it captures the contribution from the unitary eigenvalues arising from the Dirichlet
conditions, a phenomenon described in [7]. Recalling that the shifts, and hence all the
arithmetic, in the PAIN and EKSM methods are real, it is to be expected that the
CIM has the larger computational time when n is large and the linear solves dominate
the computational cost. However, it is slower only by a factor of a little less than 2;
later in the next section we solve this problem on a 3 core machine, where the timings
are comparable. There are no shifts involved in the EKSM, and this makes the solves
faster than those in the PAIN method by around a factor of 2.

The CIM is based upon a midpoint rule quadrature discretization, so for each n
in Figure 3.3 the shifts used in the linear solves can only be reused each time n is
tripled (using the trapezium rule they repeat each time n is doubled). Conversely,
the results of the PAIN and EKSM methods are iterative and so need only be applied
once. This allows computing the interpolation points and poles corresponding to some
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given higher degree rational function, and iterating until some convergence criterion
such as [58, Theorem 3.7] is achieved. However, for the application we have in mind
where the same matrix function will be computed for many different right-hand sides
in a semi-implicit time-stepping scheme, the number of quadrature points (or degree
of the rational function) needed to obtain a specified accuracy can be computed offline
in advance at little cost.

4. Neumann problems. So far our discussion has been restricted to the Dirich-
let problem, where the matrix A is nonsingular. However, many applications require
Neumann-type conditions, such as ∂u

∂n = 0 on ∂Ω, which make the discretized matrix
A singular. In this section we describe extensions to the methods discussed previously,
which allow practical computation of f(A)b in such a situation.

We begin by describing a modification of the CIM for singular A. The contour
integral Definition 3.2 of f(A) cannot be applied here, as (−∞, 0] and σ(A) = [0, λN ]
are no longer disjoint, and we cannot find a contour Γ in H(f) surrounding σ(A).
However, A is still diagonalizable, and Definition (3.1) still holds. Theorem 4.1 below
suggests how f(A)b might be computed up to the addition of a constant vector by a
contour integral which simply ignores the zero eigenvalue.

Theorem 4.1. Let A = Qdiag(λ1, λ2, . . . , λN )Q−1 be a diagonalizable matrix.
If f is a function analytic in an open connected set H(f) ⊂ C containing λ2, λ3, . . . , λN

and defined at λ1, then

f(A) =
1

2πi

∫
Γ2

f(z)(zI−A)−1dz + f(λ1)Q(1, :)Q−1(:, 1),

where Γ2 ⊂ H(f) is a closed contour containing λ2, λ3, . . . , λN , but not λ1.
Proof. To simplify notation let S = Q−1, sT = S(:, 1), and q = Q(:, 1) (the

eigenvector corresponding to the eigenvalue λ1, which spans the null-space if λ1 = 0).
Definition (3.1) implies

f(A) = Qf(Λ)S

=
(
q Q

)( f(λ1)
f(Λ)

)(
sT

S

)
= f(λ1)qs

T +Qf(Λ)S,(4.1)

where Q = Q(:, 2:end), S = S(2:end, :), and Λ = Λ(2:end, 2:end). We can expand
the inverse of (zI−A) in the same way to find

(zI−A)−1 =
1

z − λ1
qsT +Q(zI−Λ)−1S,

which, multiplying by f(z) and integrating around Γ2, gives

(4.2)

∫
Γ2

f(z)(zI−A)−1dz = qsT
∫
Γ2

f(z)

z − λ1
dz +Q

∫
Γ2

f(z)(zI−Λ)−1dzS.

The first integral on the right-hand side of (4.2) vanishes by the Cauchy integral
theorem, and since the second is precisely Definition 3.2 of f(Λ) (scaled by 2πi), we
have

(4.3)
1

2πi

∫
Γ2

f(z)(zI−A)−1dz = Qf(Λ)S.

Combining (4.1) and (4.3) gives the required result.
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Remark 1. Theorem 4.1 and its proof generalize to the case when A is not
diagonalizable but can be expressed in Jordan canonical form, where λ1 is semisimple
with multiplicity 1. Furthermore, the result can easily be extended to a contour which
avoids multiple eigenvalues of A.

Remark 2. When computing f(A)b the correction f(λ1)qs
T b is a scalar multiple

of q. If A is symmetric, then s = q and the correction can be computed explicitly if
q and λ1 are known.

Remark 3. In the case of Neumann boundary conditions in our FEM discretiza-
tion, λ1 = 0, and the null-space of L, and hence A, is a constant vector. Although
A = M−1L is not symmetric, both M and L are, and so the null-space of AT is
spanned by s = Mq/qTMq (where the scaling ensures qT s = 1). The correction
f(λ1)Q(1, :)Q−1(:, 1)b when applying Theorem 4.1 to a vector b is therefore given by

(4.4) q
f(0)qTMb

qTMq
= e

f(0)eTMb

eTMe
,

where e is the constant vector of ones. This correction has a further interpretation in
terms of mass conservation. That is, if f2(A)b is defined by the integral in (4.3), then

(4.5) f(A)b = f2(A)b +
eTM(b− f2(A)b)

eTMe
e

ensures that the masses eTMf(A)b and eTMb are equal (as should be the case when
f(0) = 1 as in (3.4)). Furthermore, since the vector e is orthogonal to each column

of MQ = MQ = S
T
, we find eTMf2(A)b = eTMQf(Λ)Sb = 0, and so (4.5) agrees

with (4.4).
The approach of simply ignoring the zero eigenvalue is related to the spectral

splitting idea introduced by Ilić and Turner for symmetric positive definite matrices
[30]. They discuss a method of decomposing f(A) whereby the spectrum σ(A) is
split into a “regular” part Λ, where f can be well approximated by a low-degree
polynomial pn, and a “singular” part Λc, which is less easily approximated. This
leads to an approximation of the form

(4.6) f(A)b ≈ Q̂f(H)Ŝb+ pn(A)(I − Q̂Ŝ)b,

where Q̂ is an orthonormal basis for the invariant subspace corresponding to Λc such
that AQ̂ = Q̂H, and Ŝ = Q̂T . Ilić and Turner suggest that one of the drawbacks of
the method is the difficulty in computing the basis Q̂, but they go some way toward
addressing this in a subsequent paper [31]. In our case A = M−1L is no longer

symmetric, but we can define Q̂ = (q zeros(N, N− 1)) and Ŝ = (MQ̂)T with H = 0
so that the first term in the sum (4.6) reduces to a familiar f(0)qsT . Some further
algebra shows that

pn(A)Q̂Ŝb = Qpn(Λ)SQ̂Ŝb

= Qpn(Λ)e1s
T b

= pn(λ1)qs
T b

and so

(4.7) f(A)b ≈ pn(A)b + (f(λ1)− pn(λ1)) qs
T b.
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Although in [30] the original motivation was to let pn be a low-degree polynomial
which approximates f well on Λ, there is no need to stick with polynomials. In
particular, we can replace pn(x) in (4.7) with rn(x; [λ2, λN ]), the degree n PAIN
approximation assuming that the spectrum of A is contained in [λ2, λN ]. In this way
the PAIN method can now also be applied to Neumann-type problems. Similarly,
replacing pn with f2 from (4.3) (or its CIM approximation), we recover the approach
suggested by Theorem 4.1.

For the EKSM, things are not so straightforward. Whereas we could apply the
PAIN method to A even when it is singular (as the only solves needed have negative
shifts), the EKSM builds a space containing (M−1L)−kb, which is not well defined if
b contains any components in the null-space of L. However, we propose the following
idea, similar to those for the CIM and PAIN methods and related to the well known
Sherman–Morrison formula. Let

(4.8) B = A+ μqs′ = M−1

(
L+ μ

MeeTM

eTMe

)

for some μ > 0; then

(4.9) f(A)b = f(B)b+ (f(0)− f(μ))qsT

by (4.1). Now B is nonsingular and f(B)b can be computed by EKSM. The rank
1 update in (4.8) means that B is now dense, and a näıve implementation will be
impractical. However, noting thatMB is simply the stiffness matrix L plus a multiple
of the rank 1 matrix (Me)(Me)T , this structure can be exploited to solve B−kb
efficiently. In particular, it can be shown that if y is a solution to

Ly = M

(
c− eTMc

eTMe
e

)

(which is well posed as the right-hand side has no component in the kernel of L), then

x = y +
eTM

eTMe

(
c

μ
− y

)
e

solves Bx = c.
Figure 4.1 and Table 4.1 show results for the same example problem (3.13),

but now with Neumann boundary conditions. For CIM and PAIN this is done
by applying the relevant boundary conditions to the stiffness matrix L, with l =

eigs(L,M,2,’SM’); l1 = l(2); lN = eigs(L,M,1,’LM’); in the codes given pre-
viously, and adjusting the output v subject to (4.5) for the CIM or (4.7) for the PAIN
method. For EKSM, f(B)b was computed with μ in (4.8) chosen as λ1/2 and adjusted
subject to (4.9). In solving these Neumann problems we use the MATLAB Parallel
Computing Toolbox on a 3 core machine, still with \, and find in Table 4.1 that as well
as convergence as a function of the number of solves n, the timings for the CIM and
for PAIN are now comparable. This suggests that on multicore or clustered machines
the penalty taken by the CIM in using complex arithmetic might be compensated by
the better scalability of its independent solves. The EKSM should benefit by a factor
of almost two, as the multiplication and solves with A (corresponding to solves with
M and L, respectively) can be solved independently, but our attempts to exploit this
in the MATLAB code lead to a decrease in speed rather than an increase.
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Fig. 4.1. As in Figure 3.3, showing the convergence of the CIM (◦—◦), EKSM (+—+), and
PAIN (�—�) approximations to the f(A)b for the Neumann version of (3.13). Here the less-optimal
dependence of the EKSM convergence on the condition number of M−1L is more evident as we move
to the more refined levels.

Table 4.1

Results for solving (3.13), but with homogeneous Neumann boundary conditions. Here we solve
on a three core machine using the MATLAB Parallel Computing Toolbox and see that the CIM
scales much better than before, and the computational time is now comparable with PAIN. Although
the EKSM should theoretically benefit from a factor of 2 speed up in the parallelization of the two
independent solves at each iteration, we did not manage to find a way to produce this in practice.

Level N Cond. no. CIM time PAIN time EKSM time
1 145 405 0.0445 0.0361 0.0352
2 545 1480 0.1037 0.3985 0.0671
3 2113 5822 0.4077 0.7482 0.3058
4 8321 23301 2.4767 2.3300 1.8584
5 33025 93215 14.779 14.926 9.4105
6 131585 372878 96.589 90.468 54.131

As before, the convergence curves for the CIM and PAIN methods are closely
matched. However, the stronger dependence of EKSM on the condition number of
A is more evident in this Neumann case, and furthermore, as there are no longer
repeated eigenvalues or gaps in the spectrum close to the origin which it can exploit,
the EKSM does not benefit from the instant accuracy we saw in the Dirichlet case.
Nonetheless, the simplicity of the linear solves and the trivial parallelization of the two
independent solves in the EKSM mean, as we see in Table 4.1, that the same accuracy
may be obtained with a comparable computational effort with more iterations.

5. Practical solution methods. In the previous section we provided CPU tim-
ings when calculating the fractional Laplacian using the three methods CIM, PAIN,
and EKSM. In all cases the majority of this time was taken up solving the required lin-
ear systems. Hence, to improve these methods, an efficient solution method for large
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sparse systems is required. In the following two sections we will investigate precondi-
tioning choices for both CIM and PAIN. All results presented are for Neumann-type
problems, although when applied to Dirichlet-type problems results were seen to be
similar. Finally, we recall that there are no shifts in the EKSM, and so standard
preconditioners for mass and stiffness matrices can be used.

5.1. Iterative methods. For both the PAIN and CIM methods we are required
to solve systems of the form

Az := (L− zk2M)x = b,

where k ∈ R and z ∈ C with |z| = 1. Furthermore, Re(z), Im(z) > 0 for the CIM,
and z is real and negative for the PAIN method. In both cases these systems are large
and very sparse. Using suitably preconditioned Krylov subspace methods may lead
to reliable and efficient numerical schemes for such systems.

For Az we wish to apply a preconditioner, Pz , such that
1. Pz is fast to construct;
2. the action of P−1

z is fast and requires little storage;
3. the Krylov subspace method acting on P−1

z Az provides mesh independent
convergence rates.

5.2. Preconditioning CIM. Due to the complex shifts required in the CIM
we are left with an indefinite system. In this case BiCGstab [62] is an appropriate
iterative solver to consider. In Table 5.1 we see that applying either an incomplete LU
factorization with no fill in, ILU0(Az), or an algebraic multigrid, AMG(Az), directly
to Az leads to, at best, mesh dependent convergence and, at worst, total failure. For
the incomplete LU preconditioner this degradation with respect to mesh refinement
is due to the fact that a high proportion of the shifts result in diffusion-dominated
systems, where it is well known that incomplete factorization performs poorly [63].
In the AMG case the action of the inverse of the complex indefinite systems is not
approximated well and results in no convergence [19]. Finally, when using P = L0,
where L0 is L with one node pinned to remove the singularity, motivated by the
fact that it is well known that AMG(L0) provides an optimal approximation of L−1

0 ,
iteration counts increase dramatically with mesh refinement [5].

We investigate the use of four possible preconditioners: P1 := L+ k2z1M, P2 :=
L+ik2z1M, P3 := L+(1−0.5i)z1k

2M, and P4 := L−k2(z1−1)M, where z = z1+iz2.
Note, P1 was originally considered by Laird and Giles [34], while P2 and P3 were
considered by Erlangga and colleagues [18, 19].

Assuming that w is not an eigenvalue of the generalized eigenvalue problem

Lx = λMx, λ ∈ R
+,

any eigenvalue σ := σ1 + iσ2 of the preconditioned system, P−1
j Az, satisfies

(5.1) w2σ
2
1 − (z2 + w2)σ1 + w2σ

2
2 + (z1 − w1)σ2 + z2 = 0,

Table 5.1

Average and maximum, in parentheses, number of BiCGStab iterations per quadrature point
for the zi shifted Laplacian solves required in the CIM(20). Here (–) denotes failure to converge.
Levels correspond to Table 3.1.

Level 2 Level 3 Level 4 Level 5
ILU0(Az) 13 (30) 16(50) 21(80) 29(142)
AMG(Az) 19 (70) (–) (–) (–)
AMG(L0) 60 (155) 100 (288) 180 (570) (–)
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Fig. 5.1. Spectrum of preconditioned system for various positions on the CIM shift circle.

where Pj = L − (w1 + iw2)M. First, for the preconditioning choices P1 and P4,
where w2 = 0, we see that the spectrum of the preconditioned system lies on the line
in the complex plane satisfying

−z2σ1 + (z1 − w1)σ2 + z2 = 0.

Second, for the preconditioners P2 and P3, where w2 �= 0, it can be shown that σ lies
on a circle in the complex plain with center C and radius R given by

(5.2) C =

(
w2 + z2
2w2

,
w1 − z1
2w2

)
and R =

√
(w2 − z2)2 + (w1 − z1)2

4w2
2

.

(See Van Gijzen, Erlangga, and Vuik [20] for details.)
In particular, in the CIM we use a modification of method1.m as described in [24],

which gives rise to a Γ which is precisely a circle of radius λN

√
1− λ1/λN about the

point λN (Figure 3.1). From here on we will call this the CIM shift circle. Writing
the shift z in the form

z(θ) = (λN + λN

√
1− λ1/λN cos(θ)) + i(λN

√
1− λ1/λN sin(θ)),

we see that the preconditioned system remains bounded independently of the magni-
tude of the shift. Furthermore, when considering P2 we see that as θ → π the CIM
shift circle approaches the origin. Figure 5.1 shows the circles that the preconditioned
systems lie on for several positions on the CIM shift circles. In practice, θ → π as
λN → ∞, or the number of CIM quadrature points is increased. The consequence
can be seen in Table 5.2, where the maximum iteration counts for P2 increase as the
mesh is refined, where this refinement has led to an increase in λN .

The first four rows of Table 5.2 show iteration counts when using exact inverses,
and the final four rows show iteration counts when we apply just one AMG V-cycle
to the preconditioners. From this table we see that P2 is not only mesh dependent
when used exactly but also suffers when used inexactly via AMG. Furthermore, it
can clearly be seen that P1, P3, and P4 perform well when used exactly and, more
importantly, inexactly, where only a few more iterations are required compared to
the exact solves. In Table 5.3 we show the effects of improving the CIM accuracy
by increasing the number of quadrature points in the numerical contour integration
on the preconditioners. On average, P4 requires the least number of iterations per
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Table 5.2

Average and maximum, in parentheses, number of BiCGStab iterations for various precondi-
tioners for the zi shifted Laplacian solve required in the 10-point CIM quadrature discretization,
CIM(10). Levels correspond to Table 3.1.

Level 2 Level 3 Level 4 Level 5
P1 17 (23) 18 (24) 17 (23) 18 (24)
P2 28 (48) 31 (50) 33 (56) 38 (66)
P3 15 (18) 15 (17) 15 (16) 14 (16)
P4 12 (16) 12 (14) 12 (14) 11 (13)

AMG(P1) 18 (22) 18 (22) 18 (22) 18 (23)
AMG(P2) 35 (70) 40 (99) 96 (567) 61 (133)
AMG(P3) 16 (19) 16 (19) 15 (18) 15(17)
AMG(P4) 13 (16) 13 (16) 12 (16) 12 (15)

Table 5.3

Average and maximum, in parentheses, number of BiCGStab iterations for various precondi-
tioners for the zi shifted Laplacian solve required in CIM with various numbers of quadrature points.

Level 2 Level 3 Level 4 Level 5
AMG(P1) 17(21) 18 (22) 19 (24) 19 (24)

CIM(20) AMG(P3) 19(24) 19 (23) 19(22) 18 (22)
AMG(P4) 13 (23) 13 (22) 13 (21) 12 (20)
AMG(P1) 17 (21) 18 (23) 19 (24) 19 (23)

CIM(40) AMG(P3) 23 (31) 24 (30) 23 (30) 23 (30)
AMG(P4) 13 (36) 13 (40) 13 (39) 13 (38)

Table 5.4

Average and maximum, in parentheses, number of PCG iterations for AMG(Ai), ILU0(Ai),
and HYBRID(Ai) preconditioners for the zi shifted Laplacian solve required when using PAIN(n),
n = 10, 20, 40.

Level 2 Level 3 Level 4 Level 5
PAIN(10) 8 (23) 9 (26) 9 (25) 10 (35)

AMG(Ai) PAIN(20) – – – –
PAIN(40) – – – –
PAIN(10) 10 (21) 12 (29) 15 (40) 19 (57)

ILU0(Ai) PAIN(20) 8 (22) 9 (31) 12 (46) 19 (66)
PAIN(40) 9 (22) 12 (33) 15 (48) 19 (71)
PAIN(10) 6(10) 7(8) 7(8) 7 (8)

HYBRID(Ai) PAIN(20) 6 (9) 6(8) 7 (8) 7 (8)
PAIN(40) 6 (8) 6 (8) 7(8) 7 (8)

fractional calculation, although the maximum number of iterations is larger than that
of P1. In all cases the maximum iteration count occurs for the largest shift and in
this case we could replace the preconditioner in P4 with that of P1, although no
significant improvement will be obtained.

5.3. Preconditioning the PAIN method. The solves required within the
PAIN method are of the form

Az := (L− zk2M)x = b,

where z are real negative. Hence, the system is symmetric positive definite and pre-
conditioned conjugate gradients (PCG) is the iterative method of choice. In Table 5.4
we see that both algebraic AMG and ILU0 lead to unsatisfactory methods. In the
case of ILU0(Ai) we see strong mesh dependence on the iteration counts, while in the
AMG case the method fails to converge. In the case of AMG(Ai) this failure is due to
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the large shifts required within the PAIN method, as either PAIN iterations increase
or mesh size decreases. While ILU0 is not a reliable method for small shifts where
it exhibits mesh dependent convergence [63], if we combine these two preconditioners
into a hybrid scheme using AMG for shifts z less than the spectral radius of LM−1

and ILU0 otherwise, we may obtain a reliable mesh and iteration number independent
solver. This can be seen in the bottom block of Table 5.4.

6. Numerical results. We have given a thorough discussion and analysis on
scalable numerical methods for computing a matrix function with a fractional power,
and in this section we apply these to simulate some classes of fractional reaction-
diffusion equations. We consider two types of reaction terms,

g1(u) := u(1− u) and g2(u) := u(u− 0.5)(1− u),

for the equation

∂u

∂t
+ ν(−Δ)αu = gi(u) in Ω,

∂u

∂n
= 0 on ∂Ω,

u(x, 0) = u0(x) ∀x in Ω,

where ν > 0. The function g1(u) represents the Fisher reaction equation leading to
logistic growth, with u = 0 being an unstable equilibrium point. The second function
g2(u) represents an Allen–Cahn equation with a quartic double well potential, which
results in two stable modes with motion driven by curvature.

Within each backward Euler time step [tn, tn+1] we will treat the nonlinear term,
gi(u

n+1), using the following simple fixed point iteration: Given un, define un+1,0 :=
un, and for k = 1, 2, . . . , N find un+1,k+1 such that

un+1,k − un

Δt
+ ν(−Δ)αun+1,k = gi(u

n+1,k−1),

where N is to be chosen. Clearly, N = 1 leads to the fully explicit treatment of the
nonlinear term, and for sufficiently large N the method is fully implicit.

Throughout the results section we terminate the above iteration when

||un+1,k − un+1,k−1||
||un|| < 10−4.

In practice this results in three to four iterations at every time step.
In all the results that follow we apply CIM(20). From the previous section we

have seen that the use of preconditioner AMG(P4), using just one V-cycle, within
BiCGStab leads to an effective numerical solution. For both the following two- and
three-dimensional results we apply this preconditioner. Table 6.1 shows average CPU
timings for three typical time steps applied to a two-dimensional fractional Allen–
Cahn problem with α = 0.85. The table clearly shows excellent scaling of the model
with respect to mesh refinement. Furthermore, these results are indicative of the
timings for all subsequent problems.
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Table 6.1

Average CPU timings per iteration.

DOFs 145 545 2113 8321 33025 131585
Δt = 0.05 0.43 0.63 1.27 7.54 28.9 126.5
Δt = 0.1 0.48 0.67 1.27 7.74 31.25 145.0
Δt = 0.2 0.51 0.78 1.42 8.64 33.25 158.0

Finally, time steps are typically in the region 0.001 < Δt < 0.1. In the case
of spinodal decomposition, initially the solution undergoes a rapid transformation
into bulk regions. The motion is then seen to slow dramatically. Hence, we use an
initial small time step Δt = 10−5 and increase this to the value Δt = 0.1 at a rate
proportional to t1/4 (see [32]).

6.1. Fisher equation. When α = 1, the Fisher reaction produces a traveling
wave with a smooth interface between the u = 1 stable state and the u = 0 unstable
state. The thickness of this interface and the speed of the wave are determined by
ν. For the Allen–Cahn reaction the interface thickness between the two stable states
u = 0 and u = 1 and the speed of the curvature driven flow are determined by ν. For
0 < α < 1, Engler [17] has shown, in the case Ω = R, that for Fisher-type reactions
with g > 0 on (0, 1), the speed of spread of the wave front is unbounded. On the other
hand, for Allen–Cahn type reactions, with g′(0) > 0 and g ≤ 0 in a neighborhood of 0,
the motion of any interfaces remains finite. In the following we will produce numerical
results for both types of models. These results are consistent with the bounds given
by Engler [17].

Here we define Ω1 = (0, 20) × (0, 0.1), u0(x, y) = e−5x, and ν = 10−3. This
domain is chosen so as to accommodate the resulting unbounded speed of spread of
the traveling front. The meshes used within the following two-dimensional example
have between 40, 000 and 140, 000 degrees of freedom. Figure 6.1 shows several evenly
spaced time slices for the evolution of the model for α = 1 and α = 0.98 through the
line y = 0. In Figure 6.1(a), the steady speed of the standard Fisher equation with
α = 1 is visible. Figure 6.1(b) shows the effects of fractional diffusion, in this case,
α = 0.98. The exponential spread of the interface, derived by Engler [17], is apparent.

6.2. Allen–Cahn equation—interfacial properties. In this first example
we are interested in the effects on the interface when fractional diffusion is used for
Allen–Cahn reactions. To enable us to focus on this issue we consider the long thin
domain Ω1 and use the initial condition u0(x, y) = max(sign(10 − y, 0)). This leads
to an interface centered along the line x = 10, the thickness of which is a function
of ν. Since it is only within a region of this interface that the solution changes
rapidly, we use a highly nonuniform mesh, with the smallest elements around the
region 5− 1/ν < x < 5 + 1/ν. Figures 6.2(a), 6.2(b), and 6.2(c) show the effects of α
on the profile of the steady state solution for fixed ν = 0.01. As expected, in the case
α = 1, we obtain a well-defined interface with the profile attaining the extreme values
of u = 1 and u = 0 around x = 8 and x = 12, respectively. For the cases where α < 1,
we see that the solution changes significantly faster near the center of the interface
with respect to the α = 1 case. Away from the center the solutions become less steep,
and as α is reduced the whole interface becomes thicker.

Figures 6.3(a) and 6.3(b) show three choices for ν = 0.1, 0.01, 0.001 with stan-
dard α = 1 diffusion compared to the choice α = 0.5, ν = 0.01. As ν decreases,
Figure 6.3(a) shows how the interface becomes thinner and steeper at the center.
From Figure 6.3(b), which zooms in on the interface region, it is clear that the tail
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Fig. 6.1. Fisher reaction for standard diffusion, α = 1 (left), and fractional diffusion, α = 0.98
(right).

(a) (b)

(c)

Fig. 6.2. Allen–Cahn reactions for various powers of diffusion, ν = 0.01.

(a) (b)

Fig. 6.3. Allen–Cahn for various ν with α = 1, compared to α = 0.5 with ν = 0.01.

(a) t=0 (b) t=100, α = 1 (c) t=100, α = 0.75

Fig. 6.4. Allen–Cahn diffusion starting from an initial cross (a) and at time t = 100 with
diffusion power α = 1 and α = 0.75, respectively ((b) and (c)).

of the interface behaves very differently when fractional diffusion is considered. All
solutions obtained using standard diffusion pass the fractional wave at some stage,
due to the long tail in the fractional solution.

6.3. Allen–Cahn equation—Motion from an initial cross. In this model
we define Ω = (0, 1) × (0, 1), u0(x, y) such that the u = 0 phase is in the shape of
a cross (Figure 6.4(a)), and ν = 10−3. With standard diffusion, i.e., α = 1, we see
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(a) α = 1 (b) α = 0.8 (c) α = 0.6

Fig. 6.5. Spinodal decomposition starting from a random mixture. Plots from left to right show
the state at time t = 100 for α = 1.0, 0.8, 0.6.

(a) t = 0 (b) t = 15 (c) t = 21 (d) t = 30

Fig. 6.6. Level lines u = 0.5 for α = 1 at times 0.4, 15, 21, and 30.

in Figure 6.4(b) that the curvature drives the u = 0 phase toward a circle (constant
curvature) and shrinks. The motion for fractional diffusion, with α = 0.75, is similar,
although the rate is slower and the interface is thinner (Figure 6.4(c)).

6.4. Allen–Cahn equation—Spinodal decomposition. In this final two-
dimensional example we investigate the effects of fractional diffusion when spinodal
decomposition is considered. The initial state is well mixed, with u0(x, y) drawn from
a random normal distribution about 0.5. For α = 1 the early stages of phase tran-
sition produce a rapid movement to bulk regions of both phases, and then motion
slows resulting in the state given in Figure 6.5(a) at time t = 100. Reducing the
fractional power leads to thinner interfaces that allow for smaller bulk regions and a
much more heterogeneous phase structure. Furthermore, motion to large bulk regions
is dramatically slowed for fractional models; see Figures 6.5(b) and 6.5(c).

6.5. Allen–Cahn equation in three-dimensional space. We now compare
standard diffusion with fractional diffusion in three spatial dimensions. Due to the
significantly large number of degrees of freedom required to obtain accurate approxi-
mations in three dimensions, the methods considered in this paper are essential when
considering fractional models. The following two examples are of fractional Allen–
Cahn models with diffusion coefficient ν = 0.02. The approximation is on a structured
cuboidal mesh with 262, 701 degrees of freedom.

For the first example the initial condition is given by u(x, y) = 0 if (x, y) ∈ D and
1 otherwise, where D is the dumbbell occupying the region given in Figure 6.6(a) and
Ω = (0, 1)× (0, 0.5)× (0, 0.5). We take the time slices in Figures 6.6 and 6.7 and show
the level line u = 0.5 for standard diffusion and fractional diffusion with α = 0.8 and
α = 1, respectively. From these we see that the motion is slowed when a fractional
power is considered. We also observe that, as was the case in two dimensions, the
interfacial region 0 < u < 1 in the fractional case is sharper.

In the second example we look at spinodal decomposition. Figures 6.8 and 6.9
show characteristics similar to those seen in the two-dimensional case. In particular,
for α = 0.8, the bulk regions persist longer when compared to α = 1.0, where at time
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(a) t = 15 (b) t = 60 (c) t = 147 (d) t = 165

Fig. 6.7. Level lines u = 0.5 for α = 0.8 at times 15, 60, 147, and 165.

(a) t = 0.2 (b) t = 4 (c) t = 38 (d) t = 100

Fig. 6.8. Level lines u = 0.5 for α = 1 at times 0.4, 4, 38, and 100.

(a) t = 15 (b) t = 4 (c) t = 5 (d) t = 100

Fig. 6.9. Level lines u = 0.5 for α = 0.8 at times 0.4, 4, 38, and 100.

t = 100 the α = 1 case has only a couple of bulk regions, while the fractional model
has numerous bulk regions.

7. Conclusion. In this paper we have developed robust, efficient, and scalable
techniques for solving fractional-in-space reaction-diffusion equations using finite el-
ements on unstructured grids. We have considered three approaches: the contour
integral method (CIM), the poles and interpolation nodes (PAIN) method, and the
extended Krylov subspace method (EKSM). CIM is trivially parallelizable through
a set of shifted linear solves, and effective preconditioners can be found that lead to
mesh independent convergence. The effects of inexact solves are well understood, but
a negative aspect is that complex arithmetic is required. In the case of the PAIN
method all computations are real and there are no issues that arise from using effec-
tive iteration schemes, but the method is not so easily parallelizable and the effect of
inexact solves is less well understood. Finally, in the case of EKSM, no shifted solves
are required, it is trivially parallelizable on two cores only, the convergence appears
strongly mesh independent, and the effect of inexact solves is unknown at this stage.
Simulation results on the fractional-in-space Fisher and Allen–Cahn equations show
that such problems can have very different dynamics to standard diffusion models and
as such represent a powerful modeling approach for understanding the many aspects
of heterogeneity.
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This paper has used the framework of fractional-in-space reaction-diffusion equa-
tions as an aid to understanding the effects of spatial heterogeneity, but clearly ho-
mogeneity can be much more complicated than the ideas expressed here. Issues that
we have not covered, but which would be needed to address in order to use nonlocal
models as a mechanism for understanding heterogeneity in depth, include considering
the more general framework of nonlocal operators, anisotropy, spatially dependent
diffusion tensors, spatially dependent fractional powers, and more complex boundary
conditions. In many of these cases it would be more natural to consider numerical
approximations to spatial Riesz derivatives in the various coordinate components, as
this approach can cope with these more subtle generalizations. However, the ideas
expressed in this paper would still have applicability in this setting. These aspects
are beyond the scope of this paper but we note that all of these are active research
areas of many groups around the world, including ours, and will be the focus of future
work.

Appendix.

0 %LEJADC Leja-Bagby points from two discrete sets. Adapted from [25]

1 function [a, b] = lejadc(A, B)

2 sA = ones(size(A)); sB = sA; % Initialize sum vectors

3 a = sA; a(1) = max(A); % Initialize a and b

4 b = sB; b(1) = min(B); % Initialize b

5 for j = 1:length(A)-1 % Loop over the discrete sets

6 sA = sA .* ((A-a(j)) ./ (A-b(j))); % Update sum A

7 sB = sB .* ((B-a(j)) ./ (B-b(j))); % Update Sum B

8 [~,indA] = max(abs(sA)); [~,indB] = min(abs(sB)); % Find min & max

9 a(j+1) = A(indA); b(j+1) = B(indB); % Update outputs

10 end
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sight on the PAIN method, and for the MATLAB codes in section 3.2.2 and the ap-
pendix which were adapted from his thesis [23]; to James Lottes for his suggestion on
how to solve the stiffness plus rank 1 matrix in the EKSM method for Neumann prob-
lems; and to Ian Turner for many discussions on fractional modeling and simulation.

REFERENCES

[1] E. E. Adams and L. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial
moment analysis, Water Resources Res., 28 (1992), pp. 3293–3307.

[2] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Transl. Math. Monogr. 79, AMS,
Providence, RI, 1990.

[3] F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution
equation with Neumann boundary conditions, J. Math. Pures Appl., 90 (2008), pp. 201–
227.

[4] F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution
equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40
(2009), pp. 1815–1851.

[5] A. Bayliss, C. I. Goldstein, and E. Turkel, An iterative method for the Helmholtz equation,
J. Comput. Phys., 49 (1983), pp. 443–457.

[6] P. Becker-Kern, M. M. Meerschaert, and H. P. Scheffler, Limit theorem for continuous
time random walks with two time scales, J. Appl. Probab., 41 (2004), pp. 455–466.
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