
Jacobian norm regularisation and conditioning
in neural ordinary differential equations

Shane Josias1,2 Willie Brink1

1Applied Mathematics, Mathematical Sciences, Stellenbosch University

2School for Data Science and Computational Thinking, Stellenbosch University

08 December 2022

1/18

What to expect

Overview of neural ordinary differential equations (ODEs)
- learnable input-output mapping defined as the solution to an ODE

Neural ODE challenges and Jacobian regularisation

Review selected results

2/18

Learnable input-output mapping

0 1 2 3 4 5

1

2

3

4

5

6

input

ou
tp

ut

1. Choose a function class
f(x) = wx+ b

3/18

Learnable input-output mapping

0 1 2 3 4 5

1

2

3

4

5

6

input

ou
tp

ut

1. Choose a function class
f(x) = wx+ b

2. Determine parameters w and b via gradient
based optimisation.

3. Done by defining an objective function (error).

Regularisation adds a penalty to the objective.
- faster convergence, better generalisation

4/18

Learnable input-output mapping: neural networks

0 1 2 3 4 5

0

2

4

6

8

input

ou
tp

ut

1. Choose a function class
f(x) = fn ◦ fn−1 ◦ · · · ◦ f1(x)

x f1(x) f2 ◦ f1(x)

· · ·

f(x)

5/18

Learnable input-output mapping: neural networks

0 1 2 3 4 5

0

2

4

6

8

input

ou
tp

ut

1. Choose a function class
f(x) = fn ◦ fn−1 ◦ · · · ◦ f1(x)

x f1(x) f2 ◦ f1(x)

· · ·

f(x)

2. Determine parameters via gradient-based
optimisation.

Regularisation adds a penalty to the objective.
- faster convergence, better generalisation

6/18

Neural ordinary differential equations

A vector h(t) follows the dynamics f :
dh(t)

dt
= f(h(t), t)

For an input h(t0) determine output as
h(t0)

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt

h(t1)

7/18

Neural ordinary differential equations

A vector h(t) follows the dynamics f :
dh(t)

dt
= f(h(t), t)

For an input h(t0) determine output as

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt

h(t0)

h(t1)

8/18

An example: binary classification

input output

use a neural network
as the function

9/18

An example: binary classification

input output

h(t0) h(t1)

0

25

50

75

100

125

150

175

dh(t)

dt
= f(h(t), t) h(t0) +

∫ t1

t0

f(h(t), t) dt

More generally useful for
1. Modelling data from continuous-time systems dynamical systems, time-series

2. Continuous normalising flows for density estimation

10/18

An example: binary classification

input output

h(t0) h(t1)

0

25

50

75

100

125

150

175

dh(t)

dt
= f(h(t), t) h(t0) +

∫ t1

t0

f(h(t), t) dt

We care about
1. Generalisation and robustness to input perturbations in high dimensions

2. Computational efficiency

How should we regularise our objective function when training neural ODEs?
11/18

The problem: rising number of function evaluations (NFE)

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt

higher accuracy requires higher NFE

0 20 40 60 80 100
epochs

15

20

25

30

35

NF
Es

NFE rises during training

12/18

Comments on conditioning

“poorly conditioned dynamics will lead to difficulties during numerical integration”

Finlay et al. How to train your neural ODE: the world of Jacobian and kinetic regularization, 2020.

“flows that need to stretch and squeeze the input space in such a way are likely to lead to ill-posed

ODE problems that are numerically expensive to solve”

Dupont et al. Augmented Neural ODEs, 2019.

13/18

Jacobian norm regularisation

If h(t) =
[
h1

h2

]
, and f(h(t), t) =

[
f1
f2

]
, then J =

[
∂f1
∂h1

∂f1
∂h2

∂f2
∂h1

∂f2
∂h2

]

In general: J = ∇h(t0)f(h(t), t)

‖J‖F =
√∑d

i=1

∑d
j=1 |J i,j |2 ↓ Frobenius: neural ODE

‖J‖2 = σmax(J) ↓ spectral: neural network

κ(J) =
σmax(J)

σmin(J)
→ 1 condition number: our work

14/18

Jacobian norm regularisation

Binary classification

Intertwining moons dataset

‖J‖F =
√∑d

i=1

∑d
j=1 |J i,j |2 ↓ Frobenius: neural ODE

‖J‖2 = σmax(J) ↓ spectral: neural network

κ(J) =
σmax(J)

σmin(J)
→ 1 condition number: our work

15/18

NFE reduction

Frobenius, spectral, and condition number regularisation reduce NFE.

0 50 100 150 200 250 300
epochs

10

15

20

25

30

35

40

NF
Es

baseline
frobenius
spectral
condition

N
FE

Epochs

Solid curves and shaded regions indicate mean and standard deviation over 10 runs.

Good! But at what cost?

16/18

Performance and robustness

a) Jacobian norm regularisation sacrifices performance for NFE reduction.
b) Robustness to input noise for condition number regularisation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
epsilon

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

baseline
frobenius
spectral
condition

Ac
cu

ra
cy

Epsilon

Jacobian norm regularisation leads to increased distance to decision boundary.

17/18

Conclusion

Recall that we want generalisation and a reduced NFE.

1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation
and robustness. Condition number regularisation seems to help.

2. Jacobian norm regularisation can lead to an increased distance to the decision boundary.

Ongoing work:

1. Efficient condition number estimation.
2. Characterise conditions for rising NFE (stiffness?).
3. Other ways to parameterise the ODE or solution?

18/18

