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What to expect

Overview of neural ordinary differential equations (ODEs)
- learnable input-output mapping defined as the solution to an ODE

Neural ODE challenges and Jacobian regularisation

Review selected results
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Learnable input-output mapping
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1. Choose a function class
f(x) = wx+ b

3/18



Learnable input-output mapping
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1. Choose a function class
f(x) = wx+ b

2. Determine parameters w and b via gradient
based optimisation.

3. Done by defining an objective function (error).

Regularisation adds a penalty to the objective.
- faster convergence, better generalisation
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Learnable input-output mapping: neural networks
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1. Choose a function class
f(x) = fn ◦ fn−1 ◦ · · · ◦ f1(x)

x f1(x) f2 ◦ f1(x)

· · ·

f(x)
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Learnable input-output mapping: neural networks
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1. Choose a function class
f(x) = fn ◦ fn−1 ◦ · · · ◦ f1(x)

x f1(x) f2 ◦ f1(x)

· · ·

f(x)

2. Determine parameters via gradient-based
optimisation.

Regularisation adds a penalty to the objective.
- faster convergence, better generalisation
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Neural ordinary differential equations

A vector h(t) follows the dynamics f :
dh(t)

dt
= f(h(t), t)

For an input h(t0) determine output as
h(t0)

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt

h(t1)
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Neural ordinary differential equations
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An example: binary classification

input output

use a neural network
as the function
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An example: binary classification

input output

h(t0) h(t1)
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dh(t)

dt
= f(h(t), t) h(t0) +

∫ t1

t0

f(h(t), t) dt

More generally useful for
1. Modelling data from continuous-time systems dynamical systems, time-series

2. Continuous normalising flows for density estimation
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An example: binary classification

input output

h(t0) h(t1)
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dh(t)

dt
= f(h(t), t) h(t0) +

∫ t1

t0

f(h(t), t) dt

We care about
1. Generalisation and robustness to input perturbations in high dimensions

2. Computational efficiency

How should we regularise our objective function when training neural ODEs?
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The problem: rising number of function evaluations (NFE)

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t) dt

higher accuracy requires higher NFE
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Comments on conditioning

“poorly conditioned dynamics will lead to difficulties during numerical integration”

Finlay et al. How to train your neural ODE: the world of Jacobian and kinetic regularization, 2020.

“flows that need to stretch and squeeze the input space in such a way are likely to lead to ill-posed

ODE problems that are numerically expensive to solve”

Dupont et al. Augmented Neural ODEs, 2019.
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Jacobian norm regularisation

If h(t) =
[
h1

h2

]
, and f(h(t), t) =

[
f1
f2

]
, then J =

[
∂f1
∂h1

∂f1
∂h2

∂f2
∂h1

∂f2
∂h2

]

In general: J = ∇h(t0)f(h(t), t)

‖J‖F =
√∑d

i=1

∑d
j=1 |J i,j |2 ↓ Frobenius: neural ODE

‖J‖2 = σmax(J) ↓ spectral: neural network

κ(J) =
σmax(J)

σmin(J)
→ 1 condition number: our work
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Jacobian norm regularisation

Binary classification

Intertwining moons dataset

‖J‖F =
√∑d

i=1

∑d
j=1 |J i,j |2 ↓ Frobenius: neural ODE

‖J‖2 = σmax(J) ↓ spectral: neural network

κ(J) =
σmax(J)

σmin(J)
→ 1 condition number: our work
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NFE reduction

Frobenius, spectral, and condition number regularisation reduce NFE.
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Solid curves and shaded regions indicate mean and standard deviation over 10 runs.

Good! But at what cost?
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Performance and robustness

a) Jacobian norm regularisation sacrifices performance for NFE reduction.
b) Robustness to input noise for condition number regularisation.
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Jacobian norm regularisation leads to increased distance to decision boundary.
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Conclusion

Recall that we want generalisation and a reduced NFE.

1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation
and robustness. Condition number regularisation seems to help.

2. Jacobian norm regularisation can lead to an increased distance to the decision boundary.

Ongoing work:

1. Efficient condition number estimation.
2. Characterise conditions for rising NFE (stiffness?).
3. Other ways to parameterise the ODE or solution?
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