Matlab Cheat Sheet

Some nifty commands

clc

clear

clear x

ans

close all
close(H)

whos

winopen (pwd)
class(obj)
int16(x)=y
dlmread(’path’)
dlmwrite(’path’,M)
save filename
save filename x,y

save —append filename x

load filename
ver

beep

doc function
docsearch string
web google.com

Clear command window

Clear system memory

Clear x from memory

Last result

closes all figures

closes figure H

lists data structures

Open current folder

returns objects class

convert doubles to Integers
Reads data

Writes M to path

saves all variables to .mat file
saves X,y variables to .mat file
appends x to .mat file

loads all variables from .mat file
Lists version and toolboxes
Makes the beep sound
Help/documentation for function
search documentation

opens webadress

inputdlg Input dialog box
Portions of matrices and vectors
x(:) All elements of x
x(j:end) j’th to end element of x
x(2:5) 2nd to 5th element of x
x(§,:) all j row elements
x(:,3) all j column elements
diag(x) diagonal elements of x
[A,B] concatenates horizontally
[A;B] concatenates vertically

Keyboard shortcuts

edit filename
Alt

F1

F5

F9

F10

F11

Shift+F5

F12

Ctrl+Page up/down
Ctrl+shift
Ctrl+C
Ctrl+D

Ctrl+ R/T
Ctrl+N
Ctrl+W
Ctrl+shift+d
Ctrl+shift+u
Ctrl+shift+m

Opens filename in editor
Displays hotkeys
Help/documentation for highlighted function
Run code

Run highlighted code

Run code line

Run code line, enter functions
Leave debugger

Insert break point

Moves between tabs

Moves between components
Interrupts code

Open highlighted codes file
Comment/uncomment line
New script

Close script

Docks window

Undocks window

max window/restore size

Built in functions/constants

abs(x) absolute value

pi 3.1415...

inf [e¢)

eps floating point accuracy
1e6 106

sum(x) sums elements in x
cumsum(x) Cummulative sum
prod Product of array elements
cumprod (x) cummulative product
diff Difference of elements
round/ceil/fix/floor Standard functions..

*Standard functions: sqrt, log, exp, max, min, Bessel

*Factorial(x) is only precise for z < 21

Cell commands A cell can contain any variable type.

x=cell(a,b) a xb cell array
x{n,m} access cell n,m
cell2mat (x) transforms cell to matrix

cellfun(’fname’,C) Applies fname to cells in C

Strings and regular expressions

strcomp compare strings (case sensitive)
strcompi compare strings (not case sensitive)
strncomp as strcomp, but only n first letters
strfind find string within a string

, gives start position
regexp Search for regular expression

Logical operators

&& Short-Circuit AND.
& AND

Il Short-Circuit or

| or

not

== Equality comparison
= not equal

isa(obj, ’class_name’) is object in class
*0ther logical operators: <,>,>=,<=

*A11 above operators are elementwise

*Class indicators: isnan, isequal, ischar, isinf, isvector

, isempty, isscalar, iscolumn

*Short circuits (SC) only evaluate second criteria if
first criteria is passed, it is therefore faster.
And useful fpr avoiding errors occuring in second criteria

*non-SC are bugged and short circuit anyway

Variable generation
j:k row vector [j,j+1,...,k]

jrik row vector [j,j+i,...,k],

n points linearly spaced
and including a and b

linspace(a,b,n)

NaN(a,b)

ones(a,b)

zeros(a,b)
meshgrid(x,y)
[a,bl=deal (NaN(5,5))
global x

axb matrix of 1 values
axb matrix of 0 values

declares a and b
gives x global scope

cellfun

axb matrix of NaN values

2d grid of x and y vectors

Standard Matrix and vector operations

x=[1, 2, 3]
x=[1; 2; 3]
x=[1, 2; 3, 4]
x(2)=4
X.xy

x./y

x+y

x-y

A°n

A.°n

A’

inv(A)
size(x)
eye(n)

sort (A)
eig(A)

1x3 (Row) vector defined

3x1 (Column) vector defined

2x2 matrix

change index value nr 2

Element by element multiplication
Element by element division
Element by element addition
Element by element subtraction
normal/Matrix power of A
Elementwise power of A
Transpose

Inverse of matrix

Rows and Columns

Identity matrix

sorts vector from smallest to largest
Eigenvalues and eigenvectors

*Standard operations: rank,rref,kron,chol
*Inverse of matrix inv(A) should almost never be used, use RREF
through \ instead: inv(A)b = A\b.

Matrix and vector operations/functions

x(x>5)=0

x(x>5)

find (A>5)
find(isnan(A))
B=repmat (A,m,n)
bsxfun(fun,A,B)

arrayfun(fun,Al,

...,An)

change elemnts >5 to 0

list elements >5

Indices of elements >5

Indices of NaN elements

Makes B from A

Binary operation on two arrays
Calls function m times, gets n inputs
m times from arrays

*if arrayfun/bsxfun is passed a gpuArray, it runs on GPU.

Statistical commands

hist(x)
distrnd
distpdf
distcdf
distrnd
distpdf
distcdf

histogram

random numbers from dist
pdf from dist

cdf dist

random numbers from dist
pdf from dist

cdf dist

*Standard distributions (dist): norm, t, f, gam, chi2, bino
*Standard functions: mean,median,var,cov(x,y),corr(x,y),
*quantile(x,p) is not textbook version.

(It uses interpolation for missing quantiles.

*Like most programs, histogram is not a true histogram.

Structures

StructName.FieldName =

StructName (2) .FieldName
getfield(StructName, ’FieldName’)

Makes structure,

and variable named fieldname.
Sets value to struct, cell
vector or a structure.

Second element of structure
Gets data from

structure with fieldname

Plotting commands

plot(x,y,’Linewidth’,2) plots x,y points

grid adds gridlines
set(gca, ’FontSize’, 14) all fonts to size 14
mesh(x,y,z) plots x,y,z points
figure new figure window
figure(j) graphics object j
get(j) returns information
graphics object j
subplot(a,b,c) Used for multiple

figures in single plot
names Xx/y/z axis
Sets y/x axis limits
for plot to a-b
names plot

xlabel (’\mu line’,’FontSize’,14)
ylim([a b])

title(’name’,’fontsize’,22)

grid on; Adds grid to plot

legend(’x’,’y’,’Location’,’Best’) adds legends

hold on retains current figure
when adding new stuff

hold off restores to default

(no hold on)
Docked window
style for plots
£ill usefull for
coloring polygons
time series axis

set (h,’WindowStyle’, ’Docked’) ;

datetick(’x’,yy)

semilogx(x,y) plot x on log scale
semilogy(x,y) plot y on log scale
loglog(x,y) plot y,x on log scale

For printing figure h to .eps files use:
print(figure(h),’-depsc2’,’path\image.eps’)

Output commands
format short
format long

Displays 4 digits after 0
Displays 15 digits after 0

disp(x) Displays the string x
disp(x) Displays the string x
num2str (x) Converts the number in x to string

num2str([’nA is =’ OFTEN USED!
num2str(a)]) !

mat2str(x) Converts the matrix in x to string
int2str(x) Converts the integer in x to string
sprintf (x) formated data to a string

System commands

addpath(string) adds path to workspace
genpath(string) gets strings for subfolders
pwd Current directory

mkdir Makes new directory
tempdir Temporary directory
inmem Functions in memory
exit Close matlab

dir list folder content

ver lists toolboxes

Nonlinear nummerical methods
quad(fun,a,b) simpson integration of @fun

from a to b

minimum of unconstrained

multivariable function

using derivative-free method

fmincon minimum of constrained function

Example: Constrained log-likelihood maximization, note the -
Parms_est = fmincon(@(Parms) -flogL(Parms,x1,x2,x3,y)
,InitialGuess, [1,[1,[1, []1,LwrBound,UprBound, [1);

fminsearch(fun,x0)

Debbuging etc.

keyboard Pauses exceution
return resumes exceution
tic starts timer

toc stops timer

starts profiler

Lets you see profiler output
Great for finding where
€errors occur

stops at first

error inside try/catch block

profile on
profile viewer
try/catch

dbstop if error

dbclear clears breakpoints

dbcont resume execution

lasterr Last error message

lastwarn Last warning message

break Terminates executiion of for/while loop
waitbar Waiting bar

Data import/export

x1lsread/xlswrite Spreadsheets (.xls,.xlsm)
readtable/writetable Spreadsheets (.xls,.xlsm)
dlmread/dlmwrite text files (txt,csv)
load/save -ascii text files (txt,csv)
load/save matlab files (.m)
imread/imwrite Image files

Programming commands

return Return to invoking function
exist(x) checks if x exists

G=gpuArray(x) Convert varibles to GPU array
function [yl,...,yN] = myfun(xl,...,xM)
Anonymous functions not stored in main programme
myfun = @(x1,x2) x1+x2;

or even using

myfun2 = @myfun(x) myfun(x3,2)

Conditionals and loops
for i=1:n
procedure Iterates over procedure
end incrementing i from 1 to n by 1

while(criteria)
procedure Iterates over procedure
end as long as criteria is true(1)

if (criteria 1)

if criteria 1 is true do procedure 1

procedurel

elseif (criteria 2) selse if criteria 2 is true do procedure 2
procedure2

else , else do procedure 3
procedured

end

switch switch_expression

if case n holds,

case 1 run procedure n. If none holds
procedure 1 run procedure 3
case 2 (if specified)

procedure 2
otherwise
procedure 3

end

General comments

Monte-Carlo: If sample sizes are increasing generate longest
size first in a vector and use increasingly larger portions for
calculations.

Trick: Program that (1) takes a long time to run and (2)
doesnt use all of the CPU/memory ? - split it into more
programs and run using different workers (instances).

Matlab is a column vector based language, load memory
columnwise first always.

Matlab uses copy-on-write, so passing pointers (adresses) to
a function will not speed it up.

You can turn the standard (mostly) Just-In-Time

compilation off using: feature accel off. You can use

compiled (c,c++,fortran) functions using MEX functions.

For faster code also prealocate memory for variables,
Matlab requires contiguous memory usage!.

Some excellent toolboxes: MFE toolbox (Econometrics).

Functions defined in a .m file is only available there, give
own file if they are used otherplaces and name them as
myfun.m if called myfun in definition.

Graphic cards(GPU)’s have many (small) cores. If (1)
program is computationally intensive (not spending much
time transfering data) and (2) massively parallel, so
computations can be independent. Consider using the GPU!

Using multiple cores (parallel computing) is often easy to

implement, just use parfor instead of for loops.

Warnings: empty matrices are NOT overwritten ([]4+1 = []).

Rows/columns are added without warning if you write in a
nonexistent row/column. Good practise: Use 3i rather than
3*i for imaginary number calculations, because i might have
been overwritten by earlier. 1/0 returns inf, not NaN. Dont
use == for comparing doubles, they are floating point
precision for example: 0.01 == (1 —0.99) = 0.

Copyright © 2014 Thor Nielsen (thorpn86@gmail.com)
http://www.econ.ku.dk/pajhede/

http://www.econ.ku.dk/pajhede/

