The Donsker-Varadhan theory of large deviations

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

Grandes déviations et systèmes de particules en interaction, états stationnaires hors équilibre Institut Henri Poincaré, Paris, France 6 Novembre 2012

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

1 / 14

Plan

- Recap on large deviation theory
- ② Different scaling limits
- Onsker-Varadhan theory
- 4 Level-1, 2 and 2.5 large deviations
- Mention 2 problems
- The large deviation approach to statistical mechanics Phys. Rep. 478, 1-69, 2009
- Large deviation approach to nonequilibrium systems HT, Rosemary J. Harris arxiv:1110.5216

Large deviation theory

• Random variable: A_n

• Probability density: $P(A_n = a)$

Large deviation principle (LDP)

$$P(A_n = a) \approx e^{-nI(a)}$$

• Meaning of \approx :

$$\lim_{n\to\infty} -\frac{1}{n} \ln P(a) = -nI(a) + o(n)$$

• Rate function: $I(a) \ge 0$

Goals of large deviation theory

Prove that a large deviation principle exists

Calculate the rate function

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

3 / 14

Obtaining LDPs

Gärtner-Ellis Theorem

• Scaled cumulant generating function:

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln E[e^{nkA_n}], \qquad k \in \mathbb{R}$$

• If $\lambda(k)$ is differentiable, then

$$I(a) = \max_{k} \{ka - \lambda(k)\} =$$
Legendre transform of $\lambda(k)$

Contraction principle

•
$$B_n = f(A_n)$$

• LDP for $A_n \Rightarrow \text{LDP}$ for B_n :

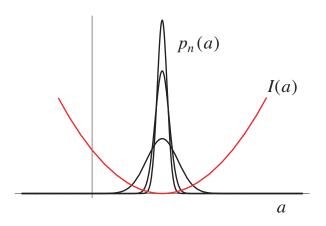
$$I_B(b) = \min_{a:f(a)=b} I_A(a) = \min_{f^{-1}(b)} I_A(a)$$

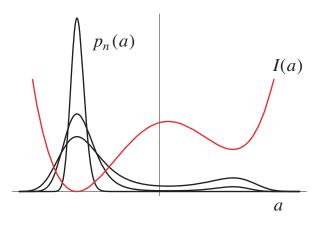


General properties

$$P(A_n = a) \approx e^{-nI(a)}$$

- Most probable value = typical value = min and zero of I
- Zero of I = Law of Large Numbers
- Local parabolic minimum = Central Limit Theorem





- LDT = Theory of typical states and fluctuations
- Requires scaling limit

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

Different scaling limits

Long-time limit (Donsker-Varadhan)

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt, \qquad P(A_T = a) \approx e^{-TI(a)}$$

$$P(A_T = a) \approx e^{-TI(a)}$$

Low-noise limit (Freidlin-Wentzell)

$$dX_t = f(X_t)dt + \sqrt{\epsilon} dW_t, \qquad P[x] \approx e^{-I[x]/\epsilon}$$

$$P[x] \approx e^{-I[x]/\epsilon}$$

Macroscopic (hydrodynamic) limit

- N particles evolving in volume L^d
- $N \to \infty$, $L \to \infty$, $\rho = N/L^d = \text{const}$

$$P[\rho(x,t)] \approx e^{-L^d I[\rho]}$$

• $x \to x/L$, $t \to t/L^2$ (diffusive scaling)

Many particles with Langevin dynamics

[Gärtner-Dawson 1980s]

Mixed limits

Long-time or steady-state LDPs

• Markov process: X_t

Generator: L

• Additive observable (level-1):

$$A_T = \frac{1}{T} \int_0^T f(X_t) \, dt$$

Current-like observable:

$$A_T = \frac{1}{T} \sum_{0 \leq t \leq T: \Delta X_t \neq 0} g(X_{t^-}, X_{t^+})$$

• Mixed observable:

$$A_T = \frac{1}{T} \sum_{0 \le t \le T: \Delta X_t \ne 0} g(X_{t^-}, X_{t^+}) + \frac{1}{T} \int_0^T f(X_t) dt$$

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

7 / 14

Long-time LDPs (cont'd)

$$P(A_T = a) \approx e^{-TI(a)}$$

Gärtner-Ellis

SCGF:

$$\lambda(k) = \lim_{T \to \infty} \frac{1}{T} \ln E[e^{TkA_{\tau}}]$$

GE Theorem:

$$I(a) = \max_{k} \{ ka - \lambda(k) \}$$

Donsker-Varadhan

Tilted operator:

$$L_k = L e^{kg} + kf$$

• Dominant eigenvalue: $\zeta(L_k)$

• SCGF: $\lambda(k) = \zeta(L_k)$

Example: Langevin equation

$$dX_t = -aX_t dt + \sigma dW_t$$

Linear observable

$$S_T = \frac{1}{T} \int_0^T X_t \, dt$$

• Tilted generator:

$$L_k = -ax\frac{d}{dx} + \frac{\sigma^2}{2}\frac{d^2}{dx^2} + kx$$

• Rate function:

$$I(s) = \frac{a^2 s^2}{2\sigma^2}$$

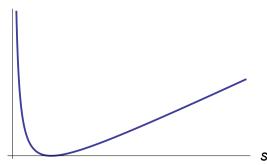
Quadratic observable

$$S_T = \frac{1}{T} \int_0^T X_t^2 dt$$

• Rate function:

$$I(s) = \frac{a^2s}{2\sigma^2} - \frac{a}{2} + \frac{\sigma^2}{8s}$$

I(s)



Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

9 / 14

Empirical distribution (level-2 LDP)

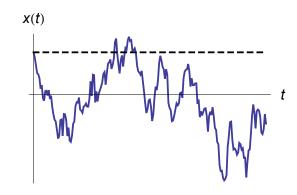
Donsker & Varadhan 1960s

• Markov process: $\{X_t\}_{t=0}^T$

Markov generator: L

• Empirical density:

$$\rho_T(x) = \frac{1}{T} \int_0^T \delta(X_t - x) dt$$



LDP

$$P(\rho_T = \rho) \approx e^{-TI(\rho)}$$

• Rate function:

$$I(\rho) = -\inf_{u>0} E_{\rho} \left[\frac{Lu}{u} \right] = -\inf_{u>0} \int dx \, \rho(x) \frac{(Lu)(x)}{u(x)}$$

Equivalent to GE

Level-2 LDP: Remarks

• Other representation [Maes]:

$$I(\rho) = \sup_{h} \sum_{x,y} \rho(x) [W(x,y) - W_h(x,y)]$$

- ► Tilted rates: $W_h(x, y) = e^{h(y)/2}W(x, y)e^{-h(x)/2}$
- Level-2 to level-1 contraction:

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt = \int f(x) \rho_T(x) dx = a(\rho_T)$$

Reversible systems (detailed balance):

$$I(\rho) = -\left\langle \sqrt{\frac{\rho}{\rho}}, L\sqrt{\frac{\rho}{\rho}} \right\rangle_p$$
, $p = \text{stationary dist.}$

• Rate functions not explicit in general (minimization involved)

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

11 / 14

Current-density LDP (level-2.5 LDP)

Maes & Netočný 2007, 2008

• SDE:

$$dX_t = F(X_t)dt + \sigma dW_t$$

• Empirical current:

$$j_T(x) = \frac{1}{T} \int_0^T \delta(X_t - x) \circ dX_t = \frac{1}{T} \int_0^T \delta(X_t - x) \dot{X}_t dt$$

• Expected current:

$$E[j_T(x)] = F\rho_s(x) - \frac{\sigma^2}{2}\nabla\rho_s(x) = \text{Fokker-Planck current}$$

Typical current:

$$j_T(x) \rightarrow j_s(x) = FP$$
 current

• What about fluctuations?

Current-density LDP (cont'd)

Joint LDP

$$P(\rho_T = \rho, j_T = j) \approx e^{-TI(\rho,j)}$$

Rate function:

$$I(\rho,j) = \begin{cases} \frac{1}{2} \int (j-j_{\rho})(\rho\sigma^{2})^{-1}(j-j_{\rho})(x) dx & \nabla \cdot j = 0\\ \infty & \nabla \cdot j \neq 0 \end{cases}$$

- Fluctuating FP current: $j_{\rho} = F\rho \frac{\sigma^2}{2}\nabla\rho$
- Current fluctuations are sourceless (in LD limit)
- Typical value:

$$j_s(x) = F \rho_s - \frac{\sigma^2}{2} \nabla \rho_s(x)$$

Contractions:

$$I(\rho) = \min_{j} I(\rho, j), \qquad I(j) = \min_{\rho} I(\rho, j)$$

Hugo Touchette (QMUL)

Donsker-Varadhan theory

Nov 2012

13 / 14

Conclusion, open problems

LDT = Complete theory of typical states and fluctuations

- Long-time (Donsker-Varadhan):
 - Largest eigenvalue problem
 - ▶ Rate functions not explicit in general involves minimization
- Low-noise (Freidlin-Wentzell):
 - Min action path (instanton) problem
 - Saddle-point approximations of path integrals

Two problems

- Sufficient / minimal observables
 - Observable with explicit rate function
 - Observable that completely characterizes a stochastic process
- F-W vs D-V
 - $ightharpoonup T
 ightarrow \infty$, $\epsilon
 ightharpoonup 0$ limits do not commute
 - ightharpoonup T and ϵ trade-offs?

[Paniconi, Oono PRE 1997]

▶ When does F-W = D-V?

[Speck, Engel, Seifert arxiv:1210.3042]