The Donsker-Varadhan theory of large deviations

Hugo Touchette

School of Mathematical Sciences
Queen Mary, University of London

Grandes déviations et systemes de particules en
interaction, états stationnaires hors équilibre
Institut Henri Poincaré, Paris, France
6 Novembre 2012

Hugo Touchette (QMUL) Donsker-Varadhan theory Nov 2012 1/14

Plan

© Recap on large deviation theory
@ Different scaling limits

© Donsker-Varadhan theory

©Q Level-1, 2 and 2.5 large deviations
© Mention 2 problems

W The large deviation approach to statistical mechanics
Phys. Rep. 478, 1-69, 2009

[§ Large deviation approach to nonequilibrium systems
HT, Rosemary J. Harris
arxiv:1110.5216
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Large deviation theory

@ Random variable: A,

@ Probability density: P(A, = a)
Large deviation principle (LDP)

P(A, = a) ~ e "(3)
@ Meaning of ~:
In P(a) = —nl(a) + o(n)
lim 1 In P(a) = I(a)

n—oo n

@ Rate function: /(a) >0

Goals of large deviation theory

© Prove that a large deviation principle exists

@ Calculate the rate function
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Obtaining LDPs

Gartner-Ellis Theorem

@ Scaled cumulant generating function:
1
AKk)= lim ZInE[e™], keR

n—oo N

o If A(k) is differentiable, then

I(a) = ml?x{ka — A(k)} = Legendre transform of (k)

Contraction principle

o By = (A A\
o LDP for A, = LDP for By: . o
Ia(b) = min Ia(a) = min / ! /
s(b) a:fr?;)lb a(a) fr_nll(r})) A(a) \ /
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General properties
P(A, = a) ~ e (3

@ Most probable value = typical value = min and zero of /
@ Zero of | = Law of Large Numbers
@ Local parabolic minimum = Central Limit Theorem

Pn(a) Pn(a)

_

I(a)

\%ﬁ d

a

@ LDT = Theory of typical states and fluctuations
@ Requires scaling limit

|
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Different scaling limits

Long-time limit (Donsker-Varadhan)

1 T
AT = ?/ f(X:) dt, P(Ar =a) = e=T1(a)
0

5/ 14

Low-noise limit (Freidlin-Wentzell)

dX; = F(X)dt +vedWe,  Plx] ~ e /1/°

Macroscopic (hydrodynamic) limit
e N particles evolving in volume L9
o N— oo, L—o00, p= N/Ld = const Plp(x, t)] ~ o—L11e]
o x — x/L, t — t/L? (diffusive scaling)

v

@ Many particles with Langevin dynamics [Gartner-Dawson 1980s]

@ Mixed limits

v
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Long-time or steady-state LDPs

@ Markov process: X;
@ Generator: L
e Additive observable (level-1):

1 T
AT = — f(X:)dt
reg )
@ Current-like observable:

1
At = T Z g(Xi—, Xi+)
0<t< T:AX:#£0

@ Mixed observable:

1 1 /7
Ar = T Z g(Xt—>Xt+)‘|‘?/0 f(Xe) dt
0<t< T:AX;£0
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Long-time LDPs (cont'd)
P(Ar = a) ~ e T1(3)

Gartner-Ellis
e SCGF: 1
A(k) = lim —1n Ele ™A

T—o0

@ GE Theorem:

I(a) = ml?x{ka — Ak)}

Donsker-Varadhan

@ Tilted operator:

L, = Le"8 + kf

e Dominant eigenvalue: ((Lg)

o SCGF: A\(k) = ((Lk)
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Example: Langevin equation

dXt = —aXt dt + O'th

Linear observable

Quadratic observable
1 T 1 T )
Sr=— X dt S+ =— X2 dt
T T/o t T T/() t
o Tilted generator: S —
d o2 d? 2 2
Ly = —ax— + ——— + kx | _ge @, 9
dx 2 dx? (5) 202 2 + 8s )
@ Rate function: I(s)
3252
I(s) = —
(S) 20_2 J

Nov 2012
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Empirical distribution (level-2 LDP)
Donsker & Varadhan 1960s

e Markov process: {X;}/_,
@ Markov generator: L

@ Empirical density:

-
pr(x) = %/0 o( Xy — x) dt

LDP
P(pr = p) ~ e~ ')
@ Rate function:
R T (Lu)(x)
(o) = LIII;%E’) [ u] B Jr;%/dxp(x) u(x)

@ Equivalent to GE

v
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Level-2 LDP: Remarks

@ Other representation [Maes]:
I(p) = snzpzp(X)[W(X,y) — Wh(x, )]
X’.y

» Tilted rates: Wi, (x,y) = e"W/2W(x, y)e=x)/2

@ Level-2 to level-1 contraction:

)
Ap = %/0 F(X,) dt :/f(x)pT(X) dx = a(p7)

@ Reversible systems (detailed balance):

I(p) = — <\/E, L\/E> : p = stationary dist.
P \p/,

@ Rate functions not explicit in general (minimization involved)
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Current-density LDP (level-2.5 LDP)

Maes & Netoény 2007, 2008
e SDE:

dXt — F(Xt)dt ‘l— O'th

@ Empirical current:

JT(X):7/O 5(Xt—X)OdXt:?/O (Xt — x) Xe dt

@ Expected current:
o2
E[jT(x)] = Fps(x) — 7VP5(X) = Fokker-Planck current

@ Typical current:
J1(x) — Jjs(x) = FP current

@ What about fluctuations?
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Current-density LDP (cont’'d)
Joint LDP

P(pr = pjT =j) = e T'(#)

@ Rate function:

L |
I(p,J) = 5/(1_#’)(9‘72) Lj—j)(x)dx V-j=0
>~ V-j#0

2
@ Fluctuating FP current: j, = Fp — %Vp

@ Current fluctuations are sourceless (in LD limit)

@ Typical value:
2

. o
Js(x) = Fps — =V ps(x)
@ Contractions:
I(p) = mjin I(p,J), 1(j) = min I(p,Jj)
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Conclusion, open problems

LDT = Complete theory of typical states and fluctuations J

@ Long-time (Donsker-Varadhan):
» Largest eigenvalue problem
» Rate functions not explicit in general - involves minimization

@ Low-noise (Freidlin-Wentzell):
» Min action path (instanton) problem
» Saddle-point approximations of path integrals

Two problems

© Sufficient / minimal observables

Observable with explicit rate function
Observable that completely characterizes a stochastic process

Q@ F-W vs D-V
T — o0, € — 0 limits do not commute
T and e trade-offs? [Paniconi, Oono PRE 1997]
When does F-W = D-V? [Speck, Engel, Seifert arxiv:1210.3042]
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