Doing maths with computers

Hugo Touchette

School of Mathematical Sciences
Queen Mary, University of London

June 30, 2009

Presentation available at
http://www.maths.qmul.ac.uk/~ht

Outline

1 A brief history of computers
2 Crunching big numbers
3 Solving equations
4 Visualising functions
5 Experimental mathematics
6 Programming
Early mechanical calculators

- Abacus
- Mesopotamia (2500 BC), Roman Empire, China, etc.
- Quick arithmetic operations
- Pascal’s calculator 1645 (Pascalina or the Arithmetique)
- Blaise Pascal (1623-1662)
- Add and subtract numbers
- Difference engine 1822
- Charles Babbage (1791-1871)
- Compute values of polynomial functions

More mechanical computers

- Leonardo Torres Quevedo (1852-1936)
- Computes real and complex roots of trinomial equations $x^p + x + r = 0$
- Isograph, AT&T, 1937
- Calculates roots of polynomials up to degree 15
- Differential analyzer, 1910s-1920s
- Solves differential equations
First universal computers

1945: ACE (Automatic Computing Machine)
Designed by Alan Turing

1946: ENIAC (Electronic Numerical Integrator And Computer)
Designed by John von Neumann

Modern computers

Personal computers / calculators

Supercomputers

Fastest computer

- DOE Roadrunner, USA, 1400 TeraFlops = 1400 \times 10^{12} \text{ ops/sec}
- List at www.top500.org
Mathematical softwares

Maple (commercial)
Maplesoft (Canada)
maplesoft.com

Mathematica (commercial)
Wolfram Research (USA)
wolfram.com

Sage (open source, free)
sagemath.org

Magma (non-commercial, license fee)
University of Sydney
magma.maths.usyd.edu.au/magma/

- Numerical computations
- Symbolic computations

Representing large numbers

Question 1
What's the biggest number you can write on a typical pocket calculator?

Solution:

Question 2
What's the biggest number that you think a computer can represent?

Solution:

Question 3
What limits us in representing numbers on computers?

Solution:
Crunching big numbers

Question 4
Write down the value of 4!

Solution:

Question 5
How many digits do you think 1000! has?

Solution:

Question 6
Write the largest number you can think of using 4 digits arranged in any way you like.

Solution:

Solving simple polynomial equations

- Some equations can be solved by hand
- No need to use computers

Question 7
Write down the solution of $2x + 4 = 8$.

Solution:

Question 8
Write down the solutions of the general equation

$$ax^2 + bx + c = 0$$

where a, b, and c are constants. How many solutions are there?

Solution:
Cubic equations

- Some equations are more difficult to solve
- Computers begin to be useful

Question 9
Find all the solutions of \(x^3 - x = 0 \).

Solution:

Question 10
Consider the general equation

\[
ax^3 + bx^2 + cx + d = 0
\]

where \(a, b, c, \) and \(d \) are constants. Do you know the formula for the solutions of this equation? How many solutions are there?

From cubic to quintic equations
Here’s one solution of the equation of degree 3 of the previous page:

\[
x = \frac{-\frac{b}{3a} + \frac{2^{1/3} \left(-b^2 + 3ac\right)}{3a^{2/3}}} {2^{1/3} \left(-b^2 + 3ac\right)} + \frac{\left(-2b^3 + 9abc - 27a^2d\right) + \left(4\left(-b^2 + 3ac\right)^3 + (-2b^3 + 9abc - 27a^2d)\right)}{2^{1/3} \left(-b^2 + 3ac\right)}
\]

Question 11
Consider the general equation

\[
a x^4 + b x^3 + c x^2 + d x + e = 0
\]
of degree 4. Is there an explicit formula for the solutions of this equation?

Solution:

Mathematical fact

Solutions of equations of degree 5 (quintics) cannot be expressed in terms of the four arithmetic operations and roots only.
Transcendental equations

- Some equations can’t be solved in closed form
- But they can be solved numerically on a computer

Question 12
Consider the equation

\[e^{-x} = x. \]

Can you solve it? That is, can you find the numerical value that verifies this equation?

Solution:

Question 13
Find the solution of

\[\cos(x) = x \]

in the interval \([0, \pi]\).

Solution:

Question 14
Find the two solutions of the equation

\[\cos(x^3) - x^2 = 0. \]

Solution:
Plotting functions of one variable

Question 15

Can you plot the following functions?

a) \(f(x) = x^2 \)

b) \(f(x) = \sin(x) \)

c) \(f(x) = \sin\left(\frac{1}{x}\right) \)

Solution:

Plotting functions of two variables

Question 16

Try to plot the following functions:

a) \(f(x, y) = x^2 + y^2 \)

b) \(f(x, y) = x^2 - y^2 \)

c) \(f(x, y) = x \sin(x) \cos(y) \)

Solution:
Plotting function of three variables

- Can we plot a function \(f(x, y, z) \) of three variables?

Question 17

The equation of a sphere of radius \(r \) is

\[
x^2 + y^2 + z^2 = r^2
\]

Try to plot the sphere of radius 2 in 3D.

Solution:

The prime numbers

Question 18

What's a prime number?

Solution:

Question 19

Write down the first 10 primes.

Solution:

Question 20

Is 7918 a prime? What about 7919?

Solution:
Distribution of primes

Here are the primes between 2 and 100:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Question 21
Do you see any order in the way the primes appear?

Solution:

Question 22
Is there a maximum prime number? In other words, is there a finite or an infinite number of prime numbers?

Solution:

Plotting the distribution of primes

- Cumulative distribution:

\[N(x) = \text{Number of primes smaller or equal to } x \]

Question 23
Do you see any pattern in the way \(N(x) \) grows?

Solution:

Question 24
How quickly does \(N(x) \) grow?

Solution:
Order in the primes: The Ulam prime spiral

Stanislaw Ulam, 1963

Sacks’s spiral (1994)

Archimedean spiral

$x^2 + x + 41$ (Euler, 1772)
What’s programming?

- Instructing a computer to perform a task
- Writing down the recipe for a computation
- Computer’s language = **programming language**

Programming language

Java, C, C++, Pascal, Fortran, Basic,...

Basis of all languages

- Arithmetic operations: +, −, ×, ÷
- Functions: e.g. sin(x)
- Repeated execution (loops)
- Conditional execution (ifs)

A simple example

Problem

Add all the prime numbers between 1 and 100

Recipe

\[\text{sumvalue} = 0\]

1 prime? no
2 prime? yes \(\Rightarrow \text{sumvalue} + 2\)
3 prime? yes \(\Rightarrow \text{sumvalue} + 3\)
4 prime? no
...
99 prime? no
100 prime? no
Print final \text{sumvalue}

Program

\[
\text{sumvalue}:=0; \\
\text{for} \ i \ \text{from} \ 1 \ \text{to} \ 100 \ \text{do} \\
\quad \text{if isprime}(i)=\text{true} \ \text{then} \\
\quad \quad \text{sumvalue}:=\text{sumvalue}+i; \\
\quad \text{end if;} \\
\text{end do;} \\
\text{sumvalue;}
\]
Another example: The Lorenz attractor
Edward Lorenz, 1963

- Position: \((x(t), y(t), z(t))\)
- Equations of motion:
 \[
 \begin{align*}
 \frac{dx}{dt} &= \sigma(y - x) \\
 \frac{dy}{dt} &= x(\rho - z) - y \\
 \frac{dz}{dt} &= xy - \beta z
 \end{align*}
 \]

Basic code

for i from 0 to t/dt do
 x:=x+sigma*(y-x)*dt;
 y:=y+(rho*x-x*z-y)*dt;
 z:=z+(x*y-beta*z)*dt;
end do:

Extra: Program for cumulative distribution of primes

- Cumulative distribution:
 \[N(x) = \text{Number of primes smaller or equal to } x\]

Recipe

1. Scan all number from 1 to \(x\)
2. Add 1 to a counter when a prime is encountered

Algorithm

\[
\begin{align*}
\text{nprimes} &= 0 \\
1 \text{ prime? no} \\
2 \text{ prime? yes }\Rightarrow \text{nprimes} + 1 \\
3 \text{ prime? yes }\Rightarrow \text{nprimes} + 1 \\
4 \text{ prime? no} \\
\vdots \\
x \text{ prime?}
\end{align*}
\]
Print final \text{nprimes}

Program

nprimes:=0;
for i from 1 to x do
 if isprime(i)=true then
 nprimes:=nprimes+1;
 end if;
end do;
nprimes;
If you want to know more...

- History of computers:
 - Wikipedia

- Top 500 computers in the world:
 - http://www.top500.org

- Solving quintic equations:
 - http://library.wolfram.com/examples/quintic/

- Prime numbers:
 - Wikipedia

- Prime spiral:
 - Wikipedia
 - http://www.numberspiral.com/
 - http://mathworld.wolfram.com/PrimeSpiral.html

- Lorenz attractor:
 - Wikipedia
 - http://mathworld.wolfram.com/LorenzAttractor.html

http://www.maths.qmul.ac.uk/~ht

Notes