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Introduction

e Dynamical system:

x(1) = F(x(1)) (1

e Random perturbation or disturbance (noise):

x(t) = F(x(t)) + €&(r) ek 1 (2)
N—— ——
deterministic noise

e Questions:

(¢]

(¢]

(¢]

(e]

@]

How is the noise affecting the dynamics?

What is the probability to go away from an attractor?

What is the probability of reaching a point y from a point x?

What is the most probable way to reach a point away from an attractor?

What is the most probable trajectory going from x to y?

e Applications:

@)

@)

Physics: Noise-perturbed systems, diffusion, microscopic transport, nucleation, hydrodynamic
fluctuation theory, etc.

Chemistry: Stability of chemical reactions, spontaneous transformations;

Engineering: Stability of structures, control under noisy conditions, queueing theory, etc.
Biology: Molecular transport, molecular motors, chemical networks, etc.

Sources: [vK92], [Gar85], [Jac10].

Learn about dynamical systems (ODEs) and noisy dynamical systems (SDEs);
Study low-noise perturbations of dynamical systems (low-noise large deviation theory);
Compare properties of reversible and non-reversible systems.

Learn about climbing mountains and swimming rivers.

e Some historical sources:

(¢]

(¢]

Mathematics: Wiener (Wikipage), Freidlin and Wentzell [FW84].

Physics: Einstein [Ein56], Langevin (Wikipage) [LG97], Onsager and Machlup [OM53],
Graham [Gra89], Zwanzig [Zwa01].


http://en.wikipedia.org/wiki/Norbert_Wiener
http://en.wikipedia.org/wiki/Langevin_equation

s2 1. From ordinary to stochastic differential equations

53 1.1. Ordinary differential equations (ODEs)
54 e First-order ODE:

X(1) = F(x,1) 3)
55 o Initial condition: x (0) = x¢
56 o Force: F(x,1)
57 o Homogeneous: F(x,t) = F(x) (no explicit time dependence).
58 o Non-homogeneous: F(x,1?)
59 e Vector first-order ODE:
X1 F 1
X(r) =F(x, 1), x=1: F=1: “)
Xn Fy
60 e Remark: Bold letters are not used thereafter for vectors; it will be clear from the context whether x
61 is a vector or a scalar.
62 e Example: Newton’s equation for the pendulum of length ¢ with friction:
. . g .
0+)/9+Zs1n9=0. 5)
63 Define x; = 6 and x5 = 6. Then
X 1 = X2
. g . (0)
X2 = —YXp — Z Sin xq.
64 e *Example: Driven pendulum:
. . g .
9+)/9+Zs1n9 = A(1). @)
65 Define x; = 0, x5 = 6, and x3 = t. Then
b 1 = X2
f2 = —yxs =  sinx + A(xa) (8)
X3 = 1.
66 e Remarks:
67 o An nth order ODE can be written as an n-component first-order ODE.
68 o An n-component first-order non-homogeneous ODE can be written as a (n + 1)-component
69 ODE using x,4+1 =t so that X4+ = 1.
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Example: Linear ODE:
X = Ax.

General solution:
x(7) = x(0)e??.

Express the initial condition x (0) in the eigenbasis {A;, v;} of A4:
x(0) = Z a;vi.
i

Then
x(t) = Zaiekitvi.
i
Classification of solutions (assuming a; > 0 for all i):

o Exponentially decaying: Re A; < 0
o Exponentially exploding: Re A; > 0
o Pure oscillations: Re A; = 0 but Im A; # 0.

Potential ODE:
x(t) = =VU(x(1))

o Potential function: U(x)

o Gradient descending dynamics:

V() =-VU(x({)*<0

o X = 0 on critical points of U (minima, maxima, saddles) defined by VU (x) = 0.

Fixed (equilibrium) points: x* such that F(x*) = 0.

o Asymptotically stable: x(t) — x* ast — oo
o Locally stable: x(¢) — x* for x(t) = x* + §x
o Locally unstable: x(z) 4 x* for x(t) = x* + x.

Linear stability around fixed point x*:
x=F(x)=Jx*)(x —x* + O(x — x*]?)
o Jacobian matrix:

oF;
J(x*)i = —
i =g
o Stability determined as for linear systems above.

Euler scheme:
x(t 4+ At) =x@) + F(x(t),t)At

€))

10)

1)

(12)

13)

(14)

5)

(16)

an

with x(0) = xo. The force can be evaluated at any other point x ('), ' € [t,t + At] if F is

continuous.



92 1.2. Stochastic differential equations (SDEs)
93 e Noisy ODE:

xX(t) = F(x(@)) + §() (18)
—— ——
deterministic noise
94 e Gaussian random walk:
n
Sn=)_Xi.  Xi~N(0.0? iid. (19)
i=1
95 Then
(Sn) =0 (20)
var(Su) = ((Sn — {Su))?) = no’. e2))
96 e Brownian motion (BM): Partition the time interval [0, ] into n = /At sub-intervals of size At.
97 Assign a Gaussian increment
AW(i At) ~ N (0, Ar) (22)
98 to each sub-interval i = 1,...,n and define
n
W) = lim 2; AW(i A1). (23)
1=
99 Properties:
100 o Initial value: W(0) = 0
101 o Mean: (W(t)) = 0 for all ¢
102 o Variance: var W(t) =t
108 o Independent increments:
dW(t) = W(t +dt) — W) ~ N(0,dr) (24)
104 are independent Gaussian random variables.
105 o Integral of increments:
t
W) = / dW(t). (25)
0
106 This gives meaning to (23) above.
107 e Gaussian white noise: Formally,
dW(t)
1) = . 26
f0=— 6)
108 The problem is that W(¢) is not differentiable for any z. Hence the derivative above does not make
109 sense, but the increments
dW(t) = &(t)dt 27)
110 do; see properties above.



111 e SDE:

dX(t) = F(X(t),t)dt +a(Xs,t)dW(t) (28)
112 In mathematics, the time variable is usually put as a subscript:
dX; = F(X;, t)dt +o(Xs, t)dW; 29)
113 o Force: F(x,t)
114 o Diffusion coefficient: o (x,t)
115 o Xy is also called a diffusion.
116 e Euler-Maruyama scheme:
Xt+At :XI+F(X11I)AI+U(Xlst)AW/l’a (30)
17 where AW; ~ N (0, At) = VAt N (0, 1).
118 e Vector SDE:
dX; = F(X,1)dt + o(X;,1)d Wy, 31
119 where
X1 F W
X=1| : ]|, F=| : |, w=| : |. (32)
120 The W;’s are independent BMs. ¢ is an n x n diffusion matrix.
121 e Remark: F and o are mostly assumed here time-independent (homogeneous). For simplicity, we
122 will also often assume o constant.
123 e Example: Langevin equation or Ornstein-Uhlenbeck (OU) process:
dX; = —yXidt +odW;, X; eR. 33)
124 Linear, gradient system with U(x) = yx?2/2.
125 e SDE convention:
126 o Itd or left-point rule:
Xivar = Xy + F(Xy)dt + o (Xy)d W, (34)
127 o *Stratonovich or mid-point rule:
_ - _ X+ X
Xevar = Xo+ FX)di +o(X)d Wy, X, = 2= (35)
128 o *Remark: Each convention defines a Markov process to which are associated special calculus
129 rules. For example, in the Itd convention,
/ 02 /A
df (Xy) = f/(Xe)dX: + Tf (Xy)dt (36)
130 for o constant, whereas in the Stratonovich convention,
df (X;) = f/(Xt)Xm- (37)
131 Thus It0 leads to a modified chain rule of calculus, which is part of Itd’s stochastic calculus,
132 whereas Stratonovich retains the normal chain rule of calculus. The different calculus rules
133 come from the fact that W(¢) is non-differentiable.
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147

148

149

150

Propagator:

P(x,t|x9,0) = P(X; = x| X9 = x0).

Also written as P;(xg, x) for a homogeneous process in the mathematical literature.

Fokker-Planck equation:

0 0
EP(x,ﬂxo,O) —a—F(x)P(x t|x0,0) + 73

o Linear partial differential equation

[¢]

Operator form:

2 82
—— P(x.1]|x0,0)

9
o P(x.1]x0,0) = LT P(x,t|x0,0)

(¢]

Fokker-Planck operator:

0 o2 92
Li=——F —
ox () + ox2
o Current form in R%:
oP
— +V.-J=0
ot

Fokker-Planck current:

[e]

D
J=FP—?VP, D =o00

Marginal distribution: P(x,t) = P(X; = x)

Remark: P(x,t) = P(x,1t]xo,0) for the initial condition P (x,0) = §(x — xp).

Stationary distribution:

%P*(x) =LTP*(x)=0

Ergodic systems:
lim P(x,1) = P*(x)
t—>00
for all initial condition.

*Evolution of observables:

0
E(f(xt» = (Lf(X,))

o Generator:
2 82

L =Fix )_x+ 2 9x2

o Adjoint generator: L = (L1)T in the sense of integration by parts; see Exercise 11.

Infinitesimal propagator:

P(y,t +dt|x,t) = P(Xsyqr =y Xs = x) =

T

Pdt(X,)’)

(38)

(39)

(40)

(41)

42)

(43)

(44)

(45)

(46)

(47)

(48)



151

152

153
154

155

156

157

158

159
160
161
162

163

164

165
166
167

168

170

171
172
173

174

e Example: Infinitesimal propagator for BM: From (23),

Pdt(w/|w) = P(Wiyar = w/|Wt = w)

L —w-wy/@dn
2rdt

-

e—dwz/(zdt)

~

2nd
— 1 e—u';zdt/z (49)
2rdt

!

e Example: Infinitesimal propagator for general Ito SDE:

Py (x'|x) = P(X;4ar = X'| Xt = x)
1 o~/ —x—F (0)di}?/ (202d1)
NV2mwo2dt

1 . 2 2
_ —[x—F(x)]*dt/(207)
V2mo2dt ¢ 0

e Remark: The stationary behavior of an SDE is determined by its stationary distribution P*(x) and
its stationary Fokker-Planck current. If a system has zero current (reversible system with gradient
force, for example), then the stationary distribution P *(x) is sufficient.

1.3. Exercises

1. (Lyapunov stability) Prove the inequality in (14); that is, show that, for a gradient descent, U(x(t))

decreases or stays the same with time. Discuss the consequence of this result for the stability of x ().

. (Normal system) Consider the linear systems x = Bx. Show that x(¢) — 0 exponentially fast if (i)

[B, BT] = 0 (we then say that B is a normal matrix) and (i) B + B7 is negative definite. [Note: These
are sufficient but non-necessary conditions for x (¢) to be asymptotically stable. Can you state necessary
and sufficient conditions?]

. (Van der Pol oscillator) Consider the nonlinear dynamical system defined by the 2nd-order ODE

¥4+ pux?-Dx+x=0. (51)

(a) Write this ODE as a vector system of two first-order ODEs.

(b) Solve this system for ;© = —1 using a Euler scheme or some ODE solver available, for example, in
Matlab, Maple or Mathematica. Try different initial conditions. Plot a solution for a given initial
condition as a function of time ¢. Then plot it as a phase space plot (i.e., X vs x). What is the fixed
point or attractor of the system?

(c) Repeat Part (b) for u = 1.

. (Time-delayed ODE) Obtain a numerical solution of the following ODE:

X(t) = sin (x(t — 27)) (52)

for ¢t € [0,200] and {x (t)}?=_2n = 0.1 as the initial (function) condition. Use Euler’s scheme or the
delayed ODE solver available in Matlab or Mathematica. Repeat for {x (z)}?:_h = (.11 and display
your two solutions on the same plot. Can you solve (52) by specifying only the initial point x (0)?

[Note: x(r — 2m) is x(¢') evaluated at the time ¢’ = t — 27.]
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S.

10.

11.

(Convergence of Euler scheme) Consider the simple linear ODE

X(t) = —x(0).

Implement Euler’s scheme for this equation and study the convergence of this scheme with the integra-
tion time-step At by plotting on a log-log plot the maximum difference

max |xeuler(l) - xexact(t)|
t€l0,T]

between Euler’s solution and the exact solution Xexac((f) = x(0) e~ as a function of Az. Use sensible
values for 7" and At.

(Brownian motion) Prove all the properties of BM listed after (23). Show moreover that
(W)W (")) = min{t, '}, (53)

and
(EMEQ)) =8 —1), (54)
where £(7) is defined formally as in (27).

(Langevin equation) Consider the Langevin equation of (33).

(a) Use the Euler-Maruyama scheme to obtain and plot a few sample paths of this SDE.

(b) Derive the full propagator P(x,t|xg,0) of this SDE analytically by solving the associated time-
dependent Fokker-Planck equation (39). [Solution in [Gar85].]

(c) Derive the stationary distribution of this SDE.

(Infinitesimal propagator) Derive the infinitesimal generator (50) in both the Itd and Stratonovich
conventions.

(Gradient SDE) Prove that the stationary distribution of a gradient SDE,
dX; = —VU(Xy)dt + odW;, (55)

has the form )
P(x) = C 72U/ (56)

where C is a normalization constant. What conditions on U(x) must be imposed to have this solution?
(Noisy Van der Pol oscillator) Use the Euler-Maruyama scheme to simulate the following SDE:

X =v

U= —x +v(a —x2 —v?) + JeE(). (57)
This system is slightly different from (51): the bifurcation is now at @ = 0.

(Generator) Show that the Fokker-Planck generator Lt of (41) is the adjoint of the generator L of (47)
with respect to the following inner product:

(f.g) = /_ F(0g(x) dx. (58)

[Hint: Use integration by parts.]



19s 1.4, Further reading

199 e Bifurcations, limit cycles, chaos and applications of ODEs: [Str94].
200 e ODE solvers in Matlab and Mathematica.
201 e SDEs and Markov processes: [VK92], [Gar85], [Ris96], [Jac10].

Stochastic calculus: [Gar85], [Jac10], [BZ99].

202

203 1to vs Stratonovich convention: [vK81], [Gar85].

204

Numerical integration of SDEs: [HigO1].

205 Non-white or colored noises: see Wikipage.

10


http://www.mathworks.com/help/matlab/ref/ode45.html
http://reference.wolfram.com/language/ref/NDSolve.html
http://en.wikipedia.org/wiki/Colors_of_noise
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2. Low-noise large deviations of SDEs

2.1. Path distribution

e Noise-perturbed dynamical system (SDE):

dX; = F(X;)dt + Jeo dW,, X; eR (59)

¢ Remark: We will deal with one-dimensional SDEs throughout the lectures; the generalization to
RY is the subject of Exercise 6.

e Trajectory: {x(t)}tT:O
e Discrete-time (sampled) trajectory: {x;}7_, with x; = x(i At) and n = T /At; see Fig. 1.

e Joint distribution:

n—1
P(x0,%1,--.,Xn) = P(xo) [ | Pac(xit1]xi) (60)
i=1
¢ Path distribution (or density):
Plx] = P({X; = x1}{—o) = lim P(xo,...,xn) (61)
At—0
e Low-noise approximation:
Plx] x e Tlxl/e (62)
e Action:
1 T
I[x] = = | [x() = F(x()]?dt (63)

= 202 0
o Also called the dynamical action or path rate function.
o Non-negativity: /[x] > 0
o Zero: I[x] =0iff x = F(x)
o Called the deterministic, noiseless, relaxation or natural path.

e Large deviation principle (LDP):

lim —e In P[x] = I[x]. (64)

e—0

This limit gives meaning to the approximation (62).

X0 X0

x(1)

t=0 =1 At

Figure 1: Sampled path.

11
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e *Remark: The path density (61) does not exist rigorously speaking. Moreover, it is known that

paths of SDEs driven by BM are non-differentiable everywhere, so the X in the action (63) seems
dubious.

The proper and rigorous interpretation of the LDP was given by Freidlin and Wentzell [FW84] and
goes as follows:

lim lim —e In P
§—>0e—>0

sup | Xy — x¢| <8} = [[x]. (65)
0<t<T

This means that the probability of a family of paths {X ,}tho of the SDE enclosed in a cylinder or
tube of width § around the deterministic and smooth path {xt}tho is given by 7 [x] in the low-noise
limit and the limit of smaller and smaller tube. Here there is no problem with x because {x,}tT=O is
continuous — it is the path followed by the tube enclosing the random paths of the SDE considered.
Sources: [Tou09, Sec. 6.1], [FW84].

2.2. Laplace’s principle

e Laplace sums:

. na; _
nll)ngo p In Z e = mlax a; (66)

i

e Asymptotic notation:

Zenai — el Max; a; (67)
i

Also called the principle of largest term.

e Laplace integrals:

1
lim —ln/ "™ ®dx = max f(x) (68)
n—>oo n Q x€EQ
e Asymptotic notation:
/ @ g o pminren f@) ©9)
Q

Also called the Laplace or saddle-point approximation.

2.3. Propagator large deviations

e Path LDP:

Plx] =< e 1lxl/e (70)

e Path integral representation of the propagator:

x(t)=x

P(x,t]x0,0) = / Dlx] P[x] (71)

x(0)=xo

e Laplace principle:

x(t)=x

P(x,t]x0,0) = /(0)_ Dlx] Plx]

x(t)=x
= / D[x] e 1lxl/e
x(0)=xo

= e~ 1x™1/e (72)

12



244 o Also called a WKB or semi-classical approximation.

245 o Contraction principle: general derivation of an LDP from an LDP (here from / to V).

246 e Propagator LDP:

P(x,1]xq,0) x e~V itlx0.0)/ (73)
247 ¢ Quasi-potential:
V(x,t]|x0,0) = inf I[x] (74)
x(1):x(0)=x0,x(t)=x
248 o Also called the pseudo or quasi-potential or simply the rate function.
249 o Non-negativity: V(x,t|xg,0) > 0
250 e Instanton:

x*(t) = arg I[x]

inf
x(1):x(0)=x0,x()=x

V(x,t]x9,0) = I[x*] (75)

[¢]

251 Also called the minimum action or most probable path.

[¢]

252 Most likely path among all (exponentially) unlikely fluctuation paths from xg to x.

Determines the propagator in the low-noise limit.

N
a
@
o

254 There may be more than one instanton (more than one solution of the variational problem
255 defining the quasi-potential).

(¢]

256 e Euler-Lagrange (EL) equation: x*(¢) is an optimizer of 7 [x] so that
d oL dL
S a. T . = 07 0 - b t = 76
719t o x(0) = x0, x(1)=x (76)
257 o Action density or Lagrangian:
1
L(x,%) = 7 (& — F(x))? 77
20
258 o Explicit EL equation:
¥ —F(x)F'(x) =0, x(0) = xg, x(t) = x. (78)
259 This is a second-order ODE with two boundary conditions.
260 e Hamilton’s equations: To any Lagrangian dynamics can be associated an equivalent Hamiltonian
261 dynamics.
262 o Hamiltonian: 3L
H(x,p) = p-Xp— L(Xp,x), P = FEN (79)
Ap
263 o Conjugate momentum:
aL
0x
264 o Explicit Hamiltonian:
2
14
H(x,p) = 5t PF(x) (81)

13
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281
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284

o Hamilton’s equations:

. oH
X =—=p+ F(x)
dp
) oH
pP=—5-= —pF'(x) (82)
X
* Two first-order ODE:s.
s Energy is conserved: H = 0
o Quasi-potential:
t x
V(x,t]|x9,0) = I[x*] =/ L(x*, x*)dt =/ prdx*, (83)
0 xo0

where p* is the instanton momentum.

Remark: The Lagrangian and Hamiltonian equations are only auxiliary dynamics for finding the
instanton; the real dynamics is the SDE.

*Hamilton-Jacobi equation:

A% 1
a0, H =] =0, 84
ot (x 8x) (84)
where V = V(x, t|xg, 0).
*Bellman’s optimality principle:
V(x,t|x0,0) = inf{V(x,t|x’,s) + V(x, s|x0,0)} (85)
x/

for any intermediate times s € [0, ¢].

Example: The Lagrangian of the Langevin equation (33) with o = 1 is

L .
L=+ yx)? (86)
and leads to the EL equation
¥—yp2x =0. (87)
The Hamiltonian is
2
H =7 —ypx (88)
and leads instead to
X =p-yx, P = ypx. (89)

2.4. Stationary large deviations

e Remark: Assume that the ODE x = F(x) has a unique attractor located, without loss of generality,

at x = 0. We can always translate the attractor at O if need be. The case of many attractors will not
be treated in the lectures; see further reading.

e Stationary LDP:

P(x) < e”V/e (90)

14
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312

¢ Quasi-potential:

V = inf 1 91
(X) x(t):x(—ogl=0,x(0)=x [X] ( )

e Instanton:

x*(@t) = ar inf I[x 92
() gx(z‘):x(—oo)=0,x(0)=x [ ] ©2)

e Remarks:

o The terminal conditions x(—oo) = 0 and x(0) = x arise because we want the stationary

distribution in the long-time limit. Thus, we should choose x (0) on the attractor (here assumed
to be x = 0) and x (co) = x. By time-translation invariance of the Lagrangian (or action), this
is equivalent to x(—o0) = 0 and x(0) = x.

*In the infinite time limit, it does not matter whether you start at the attractor or not: from any
initial condition, the system will go to the attractor in finite time with zero action. Consequently,
the initial condition x(—o0) = 0 above can be changed to x(—o0) = anywhere.

*It can be proved more generally that

V(x) = inf inf I[x]. 93
(x) IIEOx(O)=g,lx(t)=x [X] ©3)

Thus, a priori, the stationary quasi-potential is found by minimizing over all paths going from
the attractor to the point x of interest after a time 7. However, in many cases (all cases known
to me) the minimization selects only those paths that achieve this in infinite time.

Euler-Lagrange equation: Same as (76) but with terminal conditions x(—o0) = 0, x(0) = x.
Hamilton’s equations: Same as (82) but with correct terminal conditions.

Hamilton-Jacobi equation:

Explicitly:

H(x,V'(x)) =0. 94)
02
FV'+ 71/’2 =0. (95)

General properties of the quasi-potential:

o V(x) = 0 with equality iff x = 0 (more generally, for x on the attractor).

o V/(x) is continuous but not necessarily differentiable; see Exercise 9 of Sec. 3.4.
General properties of the instanton x*(¢):

o H(x*, p*) = 0but p* #0.

o Line integral:

V(x) = /x p*-dx*. (96)
0

Note that time is absent from this representation.

o Interpretation: The system naturally stays at the attractor; it needs noise to be pushed away

from it. The quasi-potential is the optimal “push” cost needed to reach x; the instanton is the
optimal path to get there.
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2.5. *Escape problem

e Kramers escape:

o Thermal system at inverse temperature f3.
o Reaction coordinate or macrostate: x
o Free energy: F(x)

Canonical distribution:

[¢]

o—BF @)
Z(p)

What is the probability of escape from a metastable state to a stable state as § — oo (T — 0)?
See Fig. 2 left.

Pg(x) = 7

@]

e General escape problem (Fig. 2 right):

o Domain around an attractor: D
o Boundary 0D
o Escape time: 1, = inf{t : X; € 0D}

e Large deviation estimate:

lim P (e(V*—‘”/E <1 < e(V*+5)/8) —1 (98)

e—>0

for any 6 > 0.

o Interpretation: 7, < eV"/¢ with probability 1 as ¢ — 0.

o Escape quasi-potential:
V* = inf inf V(x,1]xg,0) (99)
x€aD t>0

o Escape instanton: Instanton reaching the boundary dD.

e Example: For Kramers’s problem, VV* = A F, the potential height. (Arrhenius law).

oD

F(x)

Figure 2: Left: Kramers’s escape problem. Right: General escape problem.
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2.6. Exercises

1.

(Laplace principle) Prove the Laplace principle for general sums, as in (66), and for general integrals,
in as in (68). Do you need any conditions on these for approximations to be valid?

(Action) Re-do the calculation of Sec. 2.1 leading to the expression of the path distribution P [x] and
action / [x]. Do the calculation using first the Itd convention and then the Stratonovich convention. Are
there any differences between the two conventions?

(Hamilton equations) Show that the Hamiltonian H is conserved under Hamilton’s equations (82).
Then show that that H(x*, p*) = 0 for the stationary instanton. Can you find another path with zero
energy? What differentiates this path from the instanton?

(Langevin equation) Find the instanton for the quasi-potential V' (x, ¢|x¢, 0) of the Langevin equation.
Repeat for the stationary quasi-potential V' (x). Verify in both cases that the quasi-potentials satisty
their corresponding Hamilton-Jacobi equations. Finally, compare the instantons with the decay paths
obtained by solving the corresponding noiseless ODE with the terminal conditions reversed. Do you
see any relation between the natural paths and the instantons?

(Quadratic well) Consider the vector SDE in R? with F = —VU and

X2 4 y2
U(x,y) = — (100)

Show that the natural decay path of this system satisfies the ODE 77 = —r. Then find the equation of
the stationary instanton as well as the associated quasi-potential V' (x, y) or V(r, ). Do you see any
relation between the decay path and instanton? Can you write the action /[x] in a simple form in polar
coordinates?

(Vector SDEs) Derive the action / [x] for a set of n coupled SDEs or, equivalently, for an SDE taking
values in R . Do you need any conditions on the diffusion matrix to derive the action?

(Linear stream) Find the stationary quasi-potential V' (x, y) for the 2D system

X=Bx+§& (101)

-1 —1
B_(1 _1), (102)
x=(x )T, and & = (& Ey)T a vector of independent Gaussian white noises. Note that this a normal
system in the sense of Exercise 2 of Sec. 1.3. Is this SDE gradient? Source: [FW84, Sec. 4.4, p. 123].

with

(Noisy Van der Pol oscillator) Find the quasi-potential V' (x, v) of the noisy Van der Pol oscillator (57).
[Hint: Use polar coordinates.]

*(WKB approximations) Consider the following ansatz for the propagator:
P()C,ll)C(),O) — e—a/8+b+68+d82+"" (103)

(a) Use this ansatz in the Fokker-Planck equation (39) to derive the Hamilton-Jacobi equation (84).

(b) Repeat for the stationary distribution to arrive at the Hamilton-Jacobi equation (95).
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st 10. *(Bellman’s principle) Write Bellman’s optimality principle (85) for s = ¢ — At and derive from the
resulting expression the Hamilton-Jacobi equation (84). Source: [DZ98, Ex. 5.7.36, p. 237].

362

sss 11. *(Numerical instantons) Solve numerically the Euler-Lagrange equation for the Langevin equation to
obtain V(x, t|xo,0) and V(x). Repeat for Hamilton’s equations. Is there any way these equations can
be used to avoid numerical instabilities?

364
365

366

367

368

369
370

371

372

373

374

375

2.7. Further reading

Laplace principle and Laplace integrals: Chap. 6 of [BO78].
First work on fluctuation paths (Onsager and Machlup): [OMS53].

Low-noise large deviations: Sec. 6.1 of [Tou09], [Gra89], Chap. 4 of [FW84] (for the mathematically
minded), [LMD98].

Other large deviation limits and large deviation theory: [EII95], [DZ98], [Tou09].
Escape problem: [Kra40], [HTB90], [Mel91], [Gar85].

Applications: [LMD98].

Numerical methods for finding instantons: [ERVEQ02], [Cam12].

Bellman’s optimality principle and dynamic programming: [Bel54], Wikipage, [FS06].
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394
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397

3. Reversible versus non-reversible systems

3.1. Gradient systems

e SDE:
dX; = —VU(X;)dt + JeadW,,  X; € R? (104)

o Potential: U(x)
o Diffusion matrix: D = oo’ .
o Assumptions:

1. U(x) has a unique attractor at x = 0 corresponding to a unique minimum of U(x).
2. D is constant and proportional to the identity matrix.
3. U(x) is such that the stationary distribution exists and is unique (ergodic systems).

e Stationary LDP:
P(x) < e V)/e (105)

e Quasi-potential: V(x) = 2U(x)

Proof 1 (Direct minimization). Assume D = 1 without loss of generality. Then for any path
{Xt}tho we have

1 T
I[x] = —/ |x 4+ VU |?dt
2 Jo

1 T T
=—/ |5c—VU|2dt+2/ x-VU dt
2 Jo 0

1 T T
:-/ |5c—VU|2dt+2/ VU -dx
2 Jo 0
2[U(xT) — U(x0)]- (106)

A%

Thus 7 [x] > 2U(x) if xo = 0 and ends at x7 = x. The minimum is achieved for x = VU which
links these two points in infinite time. O

e Remark: For finite time / [x] > 2U(x), which means that V(x, |0, 0) > V(x).

Proof 2 (Hamilton’s equations). The instanton is such that H = 0 and p # 0. This implies
p = 2VU from (81), so that, from (96),

V(x) = / prodx* = 2/ VU -dx = 2U(x). (107)
0 0
]

e Natural dynamics or decay path:

xdecay = _VU(xdecay)a xdecay(o) =X (108)

o Pure, dissipative hill-descent dynamics.
o First-order ODE.
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409
410
411

412

413

414

415

416

Uty |

X

Figure 3: Two instantons for the quadratic well. Black: Smooth instanton solving the Euler-Lagrange
equation. Red: Continuous, piecewise smooth instanton.

¢ Instanton or adjoint dynamics:
x* =VUXY), x*(0)=0 (109)

o Follows from the first Hamilton’s equations.
o Pure hill climber: the dissipation of the hill descent is reversed.
o First-order ODE (compare with the EL equation which is second-order).

o Time-reversal of decay path:
x*(t) = Xdecay(—1). 1 € (—00,0] (110)

o Reversible system: satisfies detailed balance.
o Related to the Kolmogorov loop law: see Exercise 10.
o Adjoint force:
X = Fq(x), Fq=-F. (111)

e Remark: SDEs on R are gradient: forces F(x) on R can always be written as the derivative of a
potential, F(x) = —U’(x). Periodic SDEs on the circle are not always gradient; see Exercise 9.

e Example: Langevin equation: see Exercise 4 of Sec. 2.6.

o Example: Quadratic well in R?: see Exercise 5 of Sec. 2.6. We have seen in that exercise that the
instanton satisfies the ODE 7 = r. However, this is not the only instanton minimizing the action
in the infinite-time limit: Fig. 3 shows another one, which is continuous but not C!. The smooth
instanton is the one given by the adjoint dynamics.

3.2. Transversal systems

e SDE:
dX; = —VU(x)dt + R(x)dt + JeodW, (112)

o Force: F(x) = —VU(x) + R(x)

o Transversal condition: VU(x)- R =0
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Figure 4: Linear transversal system. Left: Natural decay path (blue) and instanton (red) superimposed on
the vector plot of total force. Middle: Vector plot of the dissipative force. Right: Vector plot of the stream
force. The black lines in the plots are equi-potentials of the quasi-potential V(x, y).

o G force is orthogonal to the gradient descent force —VU.

Stationary LDP:
P(x) = e V()¢ (113)

Quasi-potential: V(x) = 2U(x)

o Same result as gradient case, yet the force is different. R plays no role in the quasi-potential.

o Proof: Follow the direct minimization of the gradient case, but include now the R component.
Then use the transversality condition to arrive at the same bound. See Exercise 4.

Natural dynamics:
x =—=VU(x) + R(x) (114)

Instanton or adjoint dynamics:
x =VU(x) + R(x) (115)

[¢]

Reverse the dissipation; keep the sign of R.

[¢]

Adjoint force:
x = Fy(x), Fg=F+DVYV. (116)

o Non-reversible system: the instanton dynamics is not the time-reverse of the decay path.

[e]

Related to the Kolmogorov loop law: see Exercise 10.

(¢]

Proof: Substitute this dynamics in / [x], use the transversality condition, and verify that the
bound (106) is attained.

e Example: The linear stream of Exercise 7, Sec. 2.6, is transversal. Its dissipative and stream forces
are shown in Fig. 4. The fact that the instanton is not the time reversal of the decay path is also
shown there.
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a3 3.3. General systems

435 e SDE:
dX; = F(Xy)dt + JeadW,, X, e R? (117)
436 o Force F is not necessarily gradient or transversal.
437 o Still assume unique fixed point at x = 0.
438 o Still assume D constant and proportional to the identity matrix. (Can be relaxed.)

439 e Stationary LDP: P(x) =< ¢~V ®)/¢

440 Quasi-potential:

Vix) = inf I[x 118
( ) x(t):x(—00)=0,x(0)=x [ ] ( )

441 Fokker-Planck current:

D
J=FP—EVP (119)
442 e Stream function: J D
R=1lm —-=F+ —VV 120
sl—r}}) P + 2 (120)
443 e Force decomposition:
F=K+R (121)
444 o Dissipative force:
D
K:—EVV (122)

(e]

Stream force: R
Tranversality: K- R =0
Interpretation: The force F' can be decomposed into a dissipative (purely gradient) force K,

445

[¢]

446

(¢]

447

448 which completely determines V/, and a stream force, orthogonal to K, which does not play any
449 role in V. The orthogonality holds only if D is constant and proportional to the identity matrix.
450 For more general systems, we have VIV - R = O instead of K - R = 0.
451 e Natural dynamics:
X =F(x) = K(x) + R(x) (123)
452 ¢ Instanton or adjoint dynamics:
x =—K(x)+ R(x) (124)
453 o Reverse the sign of dissipation; keep the sign of the (rotation) stream.
454 o Adjoint force:
X = Fy(x), Fq=F + DVV. (125)
455 o Cannot be defined a priori: we need V' (x) (and the instanton) to obtain K and R.
456 o Non-reversible system: the instanton dynamics is not the time-reverse of the decay path.
457 Equivalent to R # 0.
458 o Related to the Kolmogorov loop law: see Exercise 10.
459 o Proof: see Exercise 4.
460 e Remark: A gradient and non-gradient systems can have the same quasi-potential; they will differ in
461 that R = 0 for the former while R # 0 for the latter.
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3.4. Exercises

1. (Noisy Van der Pol oscillator) Consider again the noisy Van der Pol oscillator (Exercise 8, Sec. 2.6).

Find the stream force of this system. Then find a different SDE having the same quasi-potential as this
system, but with a null stream force, K = 0.

. (Three well system) Consider the gradient SDE with potential

U(x,y) = 3¢ ~071/3)2 _3,-x~(=5/3)*

_Se_(x_1)2_y2 _ Se_(x+1)2_y2 + x4 + (ys— 1/3)2 ‘

(126)

Find all the critical points of this potential, including the two minima at (%1, 0) and the shallow
minimum at (0, 1.5). Determine whether the instanton connecting the two deep minima goes via the
shallow minimum or via the saddle-point between them. Source: [MSVEO06].

. (Time reversibility) Show for a gradient system that the instanton is the time reversal of the natural

decay path.

. (Transversal systems) Prove that IV = 2U for transversal systems using the WKB approximation of

Exercise 9 of Sec. 2.6 or the Hamilton-Jacobi equation. Then adapt your proof to cover the general
systems described in Sec. 3.3.

. (General diffusion) Re-derive all the results of this section for a general invertible diffusion matrix D.

That is, do not assume, as done before, that D is constant or proportional to the identity matrix. What
happens to the whole formalism if D is not invertible?

. (State-dependent diffusion) Show that an SDE with gradient force F = —VU is not reversible in

general if it has a state-dependent diffusion matrix D(x). What can we say in general about the
quasi-potential of such a system?

. (Maier-Stein system [MS93]) Consider the 2D SDE

¥ =x—x>—axy® + &

y=-y—x’y+E, (127)
where £, and &y, are two independent Gaussian white noises.

(a) Find and classify the fixed points (stable, unstable, saddles) of the noiseless system.

(b) Show that this system is gradient iff « = 1. For this case, find the force potential U and the
quasi-potential V. Analyze these functions in view of the fixed points found in (a).

. (Maier-Stein-Graham system [Gra95]) Consider the following simplification of the system above:

¥ =x—x3+ &
y=y—y—2x%y + £, (128)

in which the x motion is decoupled from the y motion.

(a) Find and classify the fixed points (stable, unstable, saddles) of the noiseless system.

(b) Is this system gradient?
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10.

11.

(¢) Find the quasi-potential V' (x, y) of the system, as well as the dissipative function K(x, y) and
stream function R(x, y). The analyze these functions.

(d) Analyze the dynamics of the instantons for points inside and outside the strip y? = 1.

*(Diffusion on the circle) Consider the following diffusion on the circle (or ring):
do, =y —=U'(B))dt +dW,;, 6, €[0,2m), (129)

where U(0) = Uy cos 6, Uy and y are real numbers, and W; is a normal BM. Simulate this SDE to
understand the role of y and U. Is this system gradient? Derive its stationary quasi-potential V' (0).
Show that V' = 2U iff y = 0. Source: [Gra95].

*(Kolmogorov loop law) Consider a path {x,}fzo of a Markov system and the time-reversal {xR}tho
of this path defined by
xR(t) = x(T = 1). (130)

The Kolmogorov loop law or Kolmogorov criterion asserts that this system is reversible (in the sense of
detailed balance) iff P[x] = P[x&] for all loop paths, that is, all paths ending at their starting point.
Use this result to show that, for reversible systems, the instanton is the time reverse of the decay path.
Then prove that, for non-reversible systems, the instanton cannot be the time reverse of the decay path.

*(Potential function) Consider a ‘loop’ sequence of states x1, X2, . .., X5 that finishes with the starting
state, x, = x1, and a certain function g(x, y) of two variables. Prove that, if

n—1

G(x1,.exn) 1= ) (X7, Xi41) = 0 (131)

i=1

for all loop sequences, then there exists a ‘potential’ function G (x) such that g(x, y) = G(x) — G(y),
and
G(x1,...,xn) = G(xp) — G(x1) (132)

for non-loop sequences. Can you think of a differential analog of this result? What is the relation with
the previous exercise? Is the cost of climbing a mountain potential-like?

3.5. Further reading

e Instanton and adjoint dynamics: [Gra95].

e Other examples: [Gra89], [Cam12].

e Applications: [LMD98], [LM97].

e Time-reversibility: [OMS53], [LMD98], [LM97].

e Kolmogorov loop law: See Wikipage.

e Many attractors: Sec. 7.14 of [Gra89], [Gra95].

e Quasi-potential of general 2D non-reversible systems: [Cam12].

e *Large deviation for stochastic PDEs: [FJL82], [BSGT07].
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Epilogue: Mountains and rivers

System Dynamics Stream Detailed balance? Type

Reversible Pure gradient, D 1 R =0 Yes Mountain

Non-reversible Non pure gradient R#O0 No River or sinkhole
orD 1

e Mountains:

e Rivers:

e Sink holes:
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