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Problems for Chapter 3: Optimization

Reading

� ML822 Monte Carlo notes: Secs 3.3-3.5 of Chap. 3.

� AM783 Markov Processes notes: Secs 5.1-5.4 of Chap. 5.

Theoretical

Q1. Gradient diffusions. Consider the SDE in Rd defined by

dXt D �rU.Xt /dt C �dWt ; (1)

where U.x/ is a smooth function, called the potential, � is the noise amplitude (real, positive), and Wt is a
d -dimensional Brownian motion. Assume that U.x/ is convex (U-shaped), and so has a unique minimum at
some point x�. Assume also that Xt is ergodic, so there exists a unique stationary distribution p�.

(a) Consider the SDE without noise by setting � D 0. What is the long-time behavior of the corresponding
ODE?

(b) We have seen in class that, under some conditions on U.x/, the stationary distribution of this system is

p�.x/ D c e�2U.x/=�
2

where c is a normalization constant. Discuss the shape of p� in relation to x�. Where does p�

concentrate as � ! 0?

Numerical

Q2. Stochastic gradient descent. We seek to find the global minimum of

U.x/ D
x4

2
� 5x2 C x: (2)

This potential has a positive local minimum in addition to its global minimum, which is negative.

(a) Find numerically the positions of the local and global minima of U.x/ using any routine or function in
Python or Mathematica.

(b) Solve the gradient descent dynamics, defined by the ODE

Px.t/ D �U 0.x.t//; (3)

for various initial conditions. You can use odeint in Python or your own Euler discretization scheme.
Analyse your results in view of locating the global minimum of U.x/.

(c) Solve the stochastic gradient descent dynamics, defined by the SDE

dXt D �U
0.Xt /dt C �dWt ; (4)

for various initial conditions and noise amplitudes � using the Euler–Maruyama scheme. Analyse your
results and compare them with part (b). Does Xt always reach the global minimum? [Note: Use T D 10
and � D 1:0, then try T D 100 and � D 2:5 and only show the latter.]
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(d) Repeat part (c), but now decrease the noise in time according to �t D ˛
tC1

. Try ˛ � 5 and T � 10 to
50 to see if you can locate the global minimum. [Note: Decreasing � in time is referred to as annealing
or stochastic relaxation.]

(e) What is the advantage of stochastic gradient descent over deterministic gradient descent?

Q3. Simulated annealing. We want to find the global minimum of

V.x/ D x2.2C .sin.10x//2/

using simulated annealing.

(a) What is the global minimum of V.x/ on R? No calculations required.

(b) Use the Metropolis algorithm with simulated annealing to locate the global minimum of V.x/. Use the
annealing scheme ˇn D 1C logn and initial value X1 uniform in Œ�10; 10�. Try different displacement
distributions and show the evolution of V.Xn/ or Xn as a function of the simulation time n.

Q4. Graph coloring. [No help for this problem.] Every planar graph can be colored using only four colours
such that no two adjacent nodes have the same color. Finding such a coloring for a planar graph of m nodes
is a difficult optimization problem, since the size of the solution space is 4m. The cost function for this
problem is the number of adjacent nodes with the same coloring.

(a) Draw a connected planar graph with 10 nodes (planar means no edge crossings) and enter its adjacency
matrix. [Hint: Use a grid graph, which can be generated easily with the networkx package.]

(b) Generate a vector of size 10 that contains random colors coded as 1, 2, 3, and 4. This vector represents
the coloring of your graph. Plot the graph with the networkx package with its coloring.

(c) Write a function for the cost of the problem. The function receives the adjacency matrix and the color
vector and outputs the number of adjacent nodes with the same colors.

(d) Use simulated annealing to find an optimal coloring of the graph. Plot the resulting graph.
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