UNIVERSITY
IYUNIVESITHI
UNIVERSITEIT
Department of Mathematical Sciences
Division of Applied Mathematics

AIMS | Physics for Machine Learning

Problems for Week 1: Random variables and sampling

Reading

- ML822 Monte Carlo notes: Chap. 1. We will cover some sections in class.
- AM783 Applied Markov Processes notes: Chap 1. There is some overlap between that chapter and the one before.

Practice

Q1. Common random variables. Calculate the mean, variance, and characteristic function of the following random variables:
(a) Bernoulli p : $P(X=1)=p, P(X=0)=1-p$.
(b) Binomial with parameters (n, p).
(c) Gaussian $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(d) Exponential: $p(x)=\lambda e^{-\lambda x}$ for $x \geq 0$.
(e) Uniform over $[0, L]$.

Theoretical

Q2. Gaussian sums. Show that the sum of two IID Gaussian random variables with mean μ and variance σ^{2} is Gaussian-distributed. Generalise to a sum of n IID Gaussian random variables.

Q3. Log-normal random variable. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and define $Y=e^{X}$. Find the probability density of Y.

Numerical

Q4. Histogram function. Construct a function called myhistogram ($\mathrm{v}, \mathrm{a}, \mathrm{b}, \mathrm{n}$) that constructs a histogram of the values contained in the vector v in n bins spread uniformly in the interval $[a, b]$. The output of your function is the vector of histogram counts. Show that your function works correctly by comparing it with the similar histogram function available in Matlab, R or Python.

Q5. Non-uniform variates. Use the transformation method to construct random number generators for the following probability distributions and test them with large-enough samples by plotting the sample histogram (properly normalised) with the corresponding theoretical distribution.
(a) Random choice in a list $[1,2, \ldots, n]$ of n values with probability given in the list $\left[p_{1}, p_{2}, \ldots, p_{n}\right]$.
(b) Uniform over $[-1,1]$.
(c) Exponential with parameter λ.

Q6. Box-Muller method.

(a) Let X, Y be two independent Gaussian RVs with mean 0 and variance 1 . Show numerically that $\theta=\arctan (Y / X)$ is uniform over $[-\pi / 2, \pi / 2]$ and $R=\sqrt{X^{2}+Y^{2}}$ is distributed according to the Rayleigh distribution:

$$
p(r)=r e^{-r^{2} / 2}, \quad r \geq 0
$$

(b) Code the Box-Muller method and show that it works numerically.

Q7. Monte Carlo estimation of π. Choose a point (x, y) at random in the square

$$
S=\{(x, y): x \in[-1,1] \text { and } y \in[-1,1]\} .
$$

The probability that the point lies in the circle

$$
C=\left\{(x, y): x^{2}+y^{2}=1\right\}
$$

is equal to $\pi / 4$. Turn this result into a program that gives an approximation of π. Show that it works by performing statistical tests, showing convergence with error bars, as in the demo on statistical estimation.

Q8. Two-state Markov chain. Write a program that simulates trajectories of the two-state Markov chain with specific values of α and β, and verify with your program that the long-term occupations of the 0 and 1 states are $\beta /(\alpha+\beta)$ and $\alpha /(\alpha+\beta)$, respectively.

Q9. Random walk on graphs. Generate a connected graph, say with 10 or more states, and write a program that simulates a trajectory of the unbiased random walk on that graph. Plot a trajectory up to 1000 time steps and use it to verify that the fraction of time a node i is visited is proportional to its degree k_{i}, so that nodes with higher degree are most often visited. The Python package networkx is useful for this question.

